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We present a design and implementation for displaying and manipulating HTML pages on small
handheld devices such as personal digital assistants (PDAs), or cellular phones. We introduce meth-
ods for summarizing parts of Web pages and HTML forms. Each Web page is broken into text units
that can each be hidden, partially displayed, made fully visible, or summarized. A variety of meth-
ods are introduced that summarize the text units. In addition, HTML forms are also summarized
by displaying just the text labels that prompt the use for input. We tested the relative performance
of the summarization methods by asking human subjects to accomplish single-page information
search tasks. We found that the combination of keywords and single-sentence summaries provides
significant improvements in access times and number of required pen actions, as compared to other
schemes. Our experiments also show that our algorithms can identify the appropriate labels for
forms in 95% of the cases, allowing effective form support for small screens.
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1. INTRODUCTION

Wireless access to the World-Wide Web from handheld personal digital assis-
tants (PDAs) is an exciting, promising addition to our use of the Web. Much
of our information need is generated on the road, while shopping in stores,
or in conversation. Frequently, we know that the information we need is on-
line, but we cannot access it, because we are not near our desk, or do not
wish to interrupt the flow of conversation and events around us. PDAs are
in principle a perfect medium for fulfilling such information needs right when
they arise.
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Unfortunately, PDA access to the Web continues to pose difficulties for users
[Jones et al. 1999]. The small screen quickly renders Web pages confusing
and cumbersome to peruse. Entering information by pen, while routinely
accomplished by PDA users, is nevertheless time consuming and error-prone.
The download time for Web material to radio linked devices is still much slower
than landline connections. The standard browsing process of downloading
entire pages just to find the links to pursue next is thus poor for the context of
wireless PDAs.

One solution to the problem is the creation of special Web pages for small
devices. Such pages would be laid out for optimal viewing on small screens. One
example of such an approach is the wireless access protocol’s markup language
(WML). While effective, this solution requires information to be prepared sep-
arately for display on both standard Web browsers, and on handheld devices.
Many Web site administrators are hard pressed even now to maintain their
sites for just standard browser viewing, so adding additional maintenance load
is often infeasible.

Another approach to presenting information on personal digital assistants
has been the automatic miniaturization of standard HTML pages. One such sys-
tem is the ProxiWeb browser [ProxiNet. ProxiWeb]. It adjusts images to work
well on PDAs, and otherwise automatically formats page displays with small
screen requirements in mind. This approach works well when every detail on
a page is needed. A drawback of the approach is the large amount of neces-
sary scrolling action. This need for frequent scrolling can seriously degrade the
navigation phase of Web searches [Buyukkokten et al. 2000].

We have been exploring solutions to these problems in the context of our
power browser project [Buyukkokten et al. 2000; Buyukkokten, Garcia-Molina,
and Paepcke 2000; Buyukkokten et al. 2001; Kaljuvee et al. 2001]. The power
browser provides displays and tools that facilitate Web navigation, searching,
browsing, and input entry from a small device. The browser uses a very different
approach to support navigation and the viewing of pages. Figure 1 shows a
screen shot of the system as reported in the above references.

Instead of displaying an entire page, only the link anchors of pages are dis-
played by default. For example, “Concurrent VLSI Architecture,” and “Database
Group” are links on one of Stanford’s Web pages. The user may tap on one
of the links. This action will display the text of the corresponding page. Al-
ternatively, a left-to-right swiping pen gesture over the same link description
would list the target page’s links on the PDA. For example, the lines “Archival
Repositories” through “Hobbies” in Figure 1 are links on the “Arturo Crespo”
page. These lines were added to the display in response to a user’s left-to-
right pen gesture over “Arturo Crespo.” Notice that the links on the Crespo
page are indented. The resulting nested navigation levels are displayed like
the folders in many graphical file browsers. Successive levels are indented,
with thin vertical bars indicating the level of browsing depth for each row of
displayed text.

In addition to this navigation support, we dynamically create inverted in-
dexes of Web sites as users browse the Web from their PDAs. The indexes
are used for site-specific searching, and to provide keyword completion as
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Fig. 1. Navigation screenshot of power browser.

users write search keywords with their pen [Buyukkokten, Garcia-Molina,
and Paepcke 2000]. We are using a Web proxy server to prepare the mod-
ified PDA views. When preparing information for display on a PDA, we
can therefore afford computational expenses beyond those possible on the
PDA itself.

We were able to show that the facilities outlined above are effective for
searching and browsing. However, once users approach the page of interest,
seeing only the links on each page is insufficient. During this ‘end-game’ phase
of the information task, more of each page must be revealed, without over-
whelming the screen. A special case arises with HTML forms, such as product
orders, search panels, or online hotel registration facilities. Such forms are often
bulky and consume more screen real estate than is necessary while users study
what information is being requested of them. This article addresses the prob-
lems of Web page summarization and the summarization of HTML forms for
small devices. We will show that, while the necessary system support is very
different for page and form summarization, the two can be presented to users
in an integrated interface.

2. PAGE SUMMARIZATION

The page summarization facility is employed after a user has searched and
navigated the Web, and wishes to explore a particular page in more detail.
At this point, the user needs to gain an overview of the page, and needs the
ability to explore successive portions of the page in more depth. Figure 2a
shows, as an example, the Palm operating system’s home page. This page
would require extensive scrolling if displayed on a PDA. Instead, our proxy
server, in collaboration with the PDA, provides two levels of summarization: a
macro level, and a micro level.
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Fig. 2. (a) Palm OS hardware web page. (b) Screenshot of same page with power browser.
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Fig. 3. An STU progressively displayed in three states.

2.1 Macro-Level Summarization

The proxy begins by partitioning the page into ‘semantic textual units’ (STUs).
The result of this step is shown by the rectangles around sections of the page in
Figure 2a, which are not present in the actual HTML. In summary, STUs are
page fragments such as paragraphs, lists, or ALT tags that describe images.

In a second step, the proxy uses font and other structural information to iden-
tify a hierarchy of STUs. For example, the elements within a list are considered
to be item STUs nested within a list STU. Similarly, elements in a table, or
frames on a page, are nested. Hiding the nested STUs finally completes macro
summarization. Figure 2b exemplifies the result. Initially, each STU is repre-
sented by a single line on the PDA screen. The arrows in Figure 2 denote the
correspondence of STUs with their single-line representations. (The line num-
bers on the PDA are only for convenience of explanation and do not appear on
the actual display).

The ‘+’ symbols next to some STU representations indicate the presence of
hidden STUs at a deeper nesting level. Users may view STUs at those deeper
levels by tapping their pen on the appropriate ‘+’ symbol, or by performing a
left-to-right pen gesture. In response, the ‘+’ turns into a ‘−’ symbol, and the
nested STUs are displayed indented. For example, the STU of line 4 in Figure 2b
has been expanded, revealing lines 5–9. Then the STU of line 9 was expanded
to reveal lines 10–13. The STU of line 3 has not been expanded, hence the ‘+’
on that line. Initially, only the top level of the STU hierarchy is shown on the
screen. In Figure 2b this top level consists of four STUs in lines 1–4. Lines 5–13
were initially blank.

Note that this macro level summarization does not require special for-
matting at the Web sources. This freedom from intrusion is a significant
advantage of our approach over schemes that rely on pages to be specially
structured for PDAs. Reference [Buyukkokten et al. 2001] provides more de-
tail on how STUs are extracted from pages, and how they are ordered into
a hierarchy.
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2.2 Micro-Level Summarization

Notice that each STU is initially “truncated” and displayed in a single line.
This is one example of our micro-level summarization. In Figure 2b we only see
the first portion of each STU’s first sentence. If an STU contains more text, a
‘line marker’ (black bubble) indicates that more information is available. For
example, the STU of line 6 only shows the text “The Palm m100 handheld
is the f”. The user can progressively open the STU by tapping on the bubble
marker (see Figure 3). In particular, after the first tap, the first three lines of
the STU are shown. A half-empty line marker signals that text is still available.
A second tap reveals all of the STU. In this case, an empty line maker indicates
that the entire STU is revealed. The system thus reveals each STU in up to
three display states (two if the STU is smaller than or equal to three lines, or
one state if the entire STU fits on a single line).

With our two-level summarization, a STU like the one in line 7 of Figure 2b
may potentially be “opened” in two ways: tapping the bubble reveals its textual
content (e.g., text in a paragraph), while tapping on its ‘+’ symbol reveals nested
STUs (e.g., list items under this paragraph). Using this two-level, ‘accordion’
approach to Web browsing, users can initially get a good high-level overview of
a Web page, and then “zoom into” the portions that are most relevant.

The micro-level summarization scheme of Figure 3 is simple to implement,
but its effectiveness is limited. The first sentence of a paragraph is not neces-
sarily the best representation of the paragraph’s content. It is important that
users open as few irrelevant STUs as possible. The micro-level summarization
scheme is therefore key for ensuring optimal user performance.

We have explored five methods for micro-level summarization, and per-
formed user testing to learn how effective each of them are in helping users
quickly solve information tasks on PDAs. All of the methods we tested retain our
macro-level accordion browser approach of opening and closing large structural
sections of a Web page. However, the methods differ in how they summarize
and progressively reveal the STUs at the micro-level.

Every method we tested displays each STU in several states, just as described
above for the simple case. But the information for each state is prepared quite
differently in each method. All displays are textual. That is, none of the STUs
displays images (Existing work on image compression for other PDA browsers
[Fox and Brewer 1996], has not yet been incorporated into our browser). The
methods we tested are illustrated in Figure 4. They work as follows:

1. Incremental: The first method is the same as described above: each STU is
revealed gradually in three states; the first line, the first three lines and the
whole STU.

2. All: This display method shows the text of an entire STU in a single state.
No progressive disclosure is enabled.

3. Keywords: The third method displays in its first state the ‘important’ key-
words that occur in the STU. We will describe below how we determined
which of the STU’s words are considered important keywords. We show all
of the keywords on the display, even if they extend beyond a single line and
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Fig. 4. Five methods for progressively disclosing STUs.

wrap down to additional lines. The second state shows the first three lines
of the STU. The third state shows the entire STU.

4. Summary: This method consists of only two states. In the first state the
STU’s “most significant” sentence is displayed. The second state shows the
entire STU. We describe below how significant sentences are selected.

5. Keyword/Summary: This method combines the previous two methods. The
first state shows the keywords. The second state shows the STU’s most sig-
nificant sentence. Finally, the third state shows the entire STU.

There are, of course, many other ways to mix keywords, summary sentences,
and progressive disclosure. However, in our initial experience, these 5 schemes
seemed the most promising, and we, hence, selected them for our experiments.
Also note, that in all of these methods, only one state is used if an entire STU
happens to fit on a single line. Similarly, if an STU consists of only one sentence,
the most significant sentence is the entire STU and there are no additional
state transitions.

Figure 5 shows an example that applies all five methods to one STU on
www.onhealth.com. The ALL method at the top of Figure 5 is shown in two
columns for reasons of presentation in this publication only. On PDAs and cel-
lular phones, the display is arranged as a single column. The ALL method
displays all of the STU’s text. The empty line marker on the left indicates to
the user that the STU cannot be expanded further.

All of our states, except Keywords, display hyperlinks when encountered. For
example, if a summary sentence contains a link, it is displayed underlined and is
active. If the user clicks on the link, the top-level view of the new page is shown.
In the Incremental method, if the link starts at the end of a truncated line, the
visible portion of the link is shown and is active. With Keywords summarization,
no links are displayed, even if a keyword is part of some anchor text. In this
case we felt that a single keyword was probably insufficient to describe the
link. Furthermore, making a keyword a link, would be ambiguous when the
new keyword appears in two separate links.

Stepping back, Figure 6 shows how users’ requests for Web pages are
processed, and how summarized pages are generated. The components of
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Fig. 5. Examples for each progressive disclosure method.

Figure 6 are located in a Web proxy through which Web page requests from
PDAs are filtered. We will provide detailed explanations for the dark-colored
components in subsequent sections. The user manager keeps track of PDA user
preferences (e.g., preferred summarization method, timeout for downloading
Web pages), and of information that has already been transmitted to each ac-
tive user’s PDA. This record keeping activity is needed, because the proxy acts
as a cache for its client PDAs. Once a requested Web page, possibly with associ-
ated style sheet, has been downloaded into the proxy, a page parser extracts all
the page tokens. Using these tokens, the partition manager identifies the STUs
on the page, and passes them to the organization manager, which arranges the
STUs into a hierarchy. In Figure 2, the results of the Organization Manager’s
work are the entries that are preceded by the ‘+’ and ‘−’ characters.

If a Web page contains a form, the form-related tokens are passed from the
page parser output to the form processor, where the tokens are analyzed and
filtered as described in Section 3.
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Fig. 6. Processing a web page request from a PDA.

The summary generator (second module up from the bottom of Figure 6) op-
erates differently for our five STU display methods. For the Incremental and
ALL methods, this module passes STUs straight to the representation manager
for final display. For the Keyword and Keyword/Summary methods, the sum-
mary generator relies on the keyword extractor module. This module uses a
dictionary that associates words on the Web with word weights that indicate
each word’s importance. The module scans the words in each STU and chooses
the highest-weight words as keywords for the STU. These keywords are passed
to the summary generator.

For the Summary and Keyword/Summary methods, the summary gener-
ator relies on the sentence divider and the sentence ranking modules. The
sentence divider partitions each STU into sentences. This process is not
always trivial [Palmer and Hearst; Palmer and Hearst 1997; Reynar and
Ratnaparkhi 1997]. For example, it is not sufficient to look for periods to de-
tect the end of a sentence, as abbreviations, such as “e.g.” must be considered.
The sentence ranking module uses word weight information from the dictio-
nary to determine which STU sentence is the most important to display (see
Section 2.3 below).

The representation constructor, finally, constructs all the strings for the final
PDA display, and sends them to the remote PDA over a wireless link. The
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representation constructor draws target device information from the device
profiles database (e.g., how many lines in the display, how many characters per
line). This database allows the single representation constructor to compose
displays for palm-sized devices and for cellular phones. The respective device
profiles contain all the necessary screen parameters.

We now go into more detail on how the summarization process works. Again,
this process involves the dark-colored modules in Figure 6. This process in-
cludes summary sentence and keyword extraction.

2.3 The Page Summarization Process

Our work builds on well known techniques for text summarization [Mani and
Maybury 1999]. We use the well-known TF/IDF and within-sentence cluster-
ing techniques to find keywords and summary sentences. However, these tech-
niques have traditionally been used on relatively homogeneous, limited, collec-
tions, such as newspaper articles. We found that the Web environment required
some tuning and adaptation of the algorithms. We begin with a discussion of
our keyword extraction.

2.3.1 Extracting Keywords. Keyword extraction from a body of text relies
on an evaluation of each word’s importance. The importance of a word W is
dependent on how often W occurs within the body of text, and how often the
word occurs within a larger collection that the text is a part of. Intuitively, a word
within a given text is considered most important if it occurs frequently within
the text, but infrequently in the larger collection. This intuition is captured in
the TF/IDF measure [Salton 1989] as follows:

Wij = tfi j← log2
N
n where

Wij =weight of term Tj in document Di

tfij = frequency of term Tj in document Di

N =number of documents in collection
n=number of documents where term Tj occurs at least once

Parameter n in this formula requires knowledge of all words within the
collection that holds the text material of interest. In our case, this collection is
the World-Wide Web, and the documents are Web pages.

Given the size of the Web, it is impossible (at least for us) to construct a
dictionary that tells us how frequently each word occurs across Web pages.
Thus, the system of Figure 6 uses an approximate dictionary that contains only
some of the words, and for those, only contains approximate statistics. As we
will see, our approximation is adequate because we are not trying to carefully
rank the importance of many words. Instead, typically we have a few words
in an STU (recall that STUs are typically single text paragraphs), and we are
trying to coarsely select a handful of important words. Because our dictionary
is small, we can keep it in memory, so that we can evaluate keywords and
sentences quickly at runtime.

To build our approximate dictionary, we analyzed word frequencies over
20 million Web pages that we had previously crawled and stored in our
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Fig. 7. Creating a dictionary of weighted words.

Fig. 8. Trimming the dictionary collected from 20 million Web pages.

WebBase [Hitai et al. 2000]. Figure 7 illustrates how the dictionary was cre-
ated, and Figure 8 shows the number of words in the dictionary after each step.
The page parser in Figure 7 fetches Web pages from our WebBase and extracts
all the words from each page. The page parser sends each word to the counter
module, unless the word is a stop word, or is longer than 30 characters. Stop
words are very frequent words, such as “is”, “with”, “for”, and so on.

The Counter module tags each unique word with a number and keeps track
of the number of documents in which the word occurs. The top bar in Figure 8
shows how many words we extracted in this counting procedure.

Once counting is complete, the words that occur less than 200 times across
all the pages are eliminated. This step discards 98% of the words (second bar in
Figure 8). Notice that this step will remove many person names, or other rare
words that may well be very important and would make excellent keywords for
STUs. However, as discussed below, we will still be able to roughly approximate
the frequency of these missing words.
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The remaining words are passed through a spell checker, which eliminates
another 84% of these remaining words. The size of the dictionary has now
shrunk to 48 thousand words (Figure 8).

Finally, words that have the same grammatical stem are combined into
single dictionary entries. For example, ‘jump’ and ‘jumped’ would share an
entry in the dictionary. We use the Porter stemming algorithm for this step
of the process [Porter 1980]. The resulting dictionary, or ‘stem list’ contains
22,390 words, compared to 16,527,532 of the originally extracted set. The
words, and the frequency with which each word occurs in the 20 million
pages are stored in a dictionary lookup table. The frequencies are taken to
be approximations for the true number of occurrences of words across the
entire Web.

At runtime, when “significant” keywords must be extracted from an STU,
our keyword extractor module proceeds as follows. All the words in the STU
are stemmed. For each word, the module performs a lookup in the dictionary
to discover the approximate frequency with which the word occurs on the Web.
The word’s frequency within the Web page that contains the STU is found by
scanning the page in real time. Finally, the word’s TF/IDF weight is computed
from these values. Words with a weight beyond some chosen threshold are
selected as significant.

A special situation arises when a word is not in the dictionary, either be-
cause it was discarded during our dictionary-pruning phase, or it was never
crawled in the first place. Such words are probably more rare than any of the
ones that survived pruning and were included in the dictionary. We therefore
ensure that they are considered as important as any of the words we retained.
Mathematically, we accomplish this prioritization by multiplying the word’s
document frequency with the inverse of the smallest collection frequency that
is associated with any word in the dictionary. Given that we are only searching
for keywords with TF/IDF weight above a threshold, it has little effect that
we replace the true small weight by an approximate (but still small) weight.
Thus, given this procedure, we can compute the approximate TF/IDF score for
all words on any Web page.

Finally, notice that in our implementation we are not yet giving extra weight
to terms that are somehow “highlighted.” We believe that when a term is in
italics, or it is part of an anchor, it is more likely to be a descriptive keyword
for an STU. We plan to extend the weight formula, given earlier, to take into
account such highlighting.

2.3.2 Extracting a Summary Sentence. Two of our methods, Summary,
and Keyword/Summary require the sentence ranking module of our system to
extract the most important sentence of each STU. In order to make this selec-
tion, each sentence in an STU is assigned a significance factor. The sentence
with the highest significance factor becomes the summary sentence. The sig-
nificance factor of a sentence is derived from an analysis of its constituent
words. Luhn [1958] suggests that sentences in which the greatest number of
frequently occurring distinct words are found in greatest physical proximity to
each other, are likely to be important in describing the content of the document
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Fig. 9. Finding word clusters within sentences.

in which they occur. He suggests a procedure for ranking such sentences, and
we applied a variation of this procedure summarization of STUs in Web pages.
The procedure’s input is one sentence, and the document in which the sentence
occurs. The output is an importance weight for the sentence.

The procedure, when applied to sentence S, works as follows. First, we mark
all the significant words in S. A word is significant if its TF/IDF weight is
higher than a previously chosen weight cutoff W. W is a parameter that must
be tuned (see below). Second, we find all “clusters” in S. A cluster is a se-
quence of consecutive words in the sentence for which the following is true:
(i) the sequence starts and ends with a significant word. And (ii) fewer than D
insignificant words must separate any two neighboring significant words within
the sequence. D is called the distance cutoff, and is also a parameter that must
be tuned. Figure 9 illustrates clustering.

In Figure 9, S consists of nine words. The stars mark the four words whose
weight is greater than W. The bracketed portion of S encloses one cluster. The
assumption for this cluster is that the distance cutoff D> 2: we see that no more
than two insignificant words separate any two significant words in the figure.
We assume that if Figure 9’s sentence were to continue, the portions outside
brackets would contain three or more insignificant words.

A sentence may have multiple clusters. After we find all the clusters within
S, each cluster’s weight is computed. The maximum of these weights is taken
as the sentence weight. Luhn [1958] computes cluster weight by dividing the
square of the number of significant words within the cluster by the total number
of words in the cluster. For example the weight of the cluster in Figure 9, would
be 4× 4/7.

However, when we tried to apply Luhn’s formula, we achieved poor results.
This was not surprising, since our data set is completely different from what
Luhn was working with. Therefore we tried several different functions to com-
pute cluster weight. We achieved the best cluster weighting results by adding
the weights of all significant words within a cluster, and dividing this sum by
the total number of words within the cluster.

We conducted user tests to help us tune the weight W and distance D cutoffs
for cluster formation and to inform our selection of the above cluster weighting
function. Figure 10 shows the steps we took.

We selected ten three-sentence STUs from Web pages of ten different genres.
We asked 40 human subjects to rank these sentences according to the sentences’
importance. We then passed the STU set and the results of the human user
rankings to a prediction tuning unit. It used the dictionary and these two inputs
to find the parameter settings that made the automatic rankings best resemble
the human-generated rankings.

ACM Transactions on Information Systems, Vol. 20, No. 1, January 2002.



Efficient Web Browsing on Handheld Devices • 95

Fig. 10. Tuning cluster selection.

Fig. 11. Results of human-generated STU sentence ranking.

Figure 11 summarizes the results of the human-generated rankings. For
example, for the “Sports” STU, about 44% percent of the human subjects said the
most descriptive sentence was number 1 (of that STU), and that the second most
descriptive sentence was number 2. (Thus, the sentence ranking was 1-2-3).
Another 44% preferred the sentence ordering 2-1-3, while about 12% liked 1-3-2.
Clearly, ranking is subjective. For example, subjects disagreed in six ways on
the ranking of the three education sentences, although about half of the subjects
did settle on a 3-2-1 ranking. Finance clearly produced a 1-2-3 ordering, while
the result for technical news was almost evenly split between a 1-2-3, and a
2-1-3 order. In most cases, however, there was a winning order.

These results in hand, the task was to tune the cutoffs and the cluster weight-
ing formula so that automatic ordering would produce rankings that matched
the human-generated results as closely as possible. Figure 12 illustrates this
optimization problem. The two axes represent the parameters, distance and
weight cutoff. The lightness of each area is proportional to how many of the
most-popular rankings (or second most popular rankings) are selected at that
setting. For instance, with a weight cutoff, of 2 and a distance cutoff of 3, we
get a very dark area, meaning that with these parameter values almost none
of the two most-popular human rankings are selected.

The brightest region in Figure 12 has the optimum cutoff values, 2 for the
distance cutoff, and 3.16 for the weight cutoff. These are the values used by
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Fig. 12. Finding the proper cutoffs for word weight and distance.

our system. With these values, the automatic ranking agreed with the most
preferred human-generated ranking 70% of the time, and with the second-most
preferred ranking 20% of the time.

3. FORM SUMMARIZATION

A special challenge arises when the page we are summarizing contains a form.
In many cases, the form is complex and consumes a lot of screen real estate.
Thus, it is difficult for users to gain an overview of what the form is about, and
which information is required of them.

Rather than showing all of the input widgets at once, we want our power
browser initially to just display minimal textual prompts for the fields. This
approach allows users to scan and understand the form quickly. When the
user is ready to fill in information, pen gestures over a textual prompt cause
the associated input widget to be displayed. All other widgets remain hidden.
Figures 13–15 shown how the display works. We focus here not on exactly how
this interface would look and behave, but on the underlying technology that
will enable this type of user interface approach.

Figure 13 shows a Web page for finding people’s telephone, address, and
other information by name, as it would be seen on a desktop-size browser. This
example is taken from Yahoo!’s site.

Figure 14 shows the top form, with only the labels being displayed. In general,
all the text other than the labels will be ignored in this view. Consequently, every
visible string is the label for some form item. Buttons are identified explicitly.
Users may tap on the corresponding text to activate the button. Links within
the form are handled as normal hyperlinks. For instance, “State” in the above
example is a hyperlink to another page.

Figure 15 shows the top form partially expanded. The user has performed
a left-to-right pen gesture over the last name of the telephone search. Now an
input widget is available for the user to fill in. A right-to-left pen gesture would
close the form again, returning the display to the state of Figure 14.
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Fig. 13. Original HTML page.

Fig. 14. Form with no widgets revealed.

For the Palm Pilot’s operating system, Palm OS, we need to convert HTML
text and password input fields to the equivalent dotted lines used on the Palm
Pilot. Text areas, similarly, are converted to multiple dotted lines. Checkboxes,
radio buttons, and selection widgets also have their Palm OS equivalents, and
we need to convert for each input field.

The difficulty in generating the space-efficient display of Figure 15 from the
original Web page is that we need algorithms that find the proper text labels for
each input widget. For example, it is easy for a human being to recognize that
the “First Name” at the top of Figure 13 is the text label for the input widget
below it. Making this association automatically, however, is not always easy.
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Fig. 15. Form with one widget revealed.

To illustrate this difficulty, consider the following piece of HTML that pro-
duces a portion of the screen display in Figure 13.

Example 1.
...
First Name <input type="text" name="FirstName">
Last Name <input type="text" name="LastName">
City/Town <input type="text" name="City">
...

Each line of HTML will produce one text label and one text input widget
when rendered by a browser. We call the expressions in angle brackets input
elements. Each input element includes the type of widget the browser is to
display, and a name attribute (e.g. name= “FirstName”). In these three cases
type= “text”. At the machine level, the matching task is to associate the name
attribute value of each input element with the best of its surrounding strings.

As human observers, we easily recognize the text “First Name”, “Last Name”,
“City/Town” as labels for their respective input elements. In the HTML snippet’s
second line, for example, it is clear to a human that the input element with the
name attribute ‘LastName’ is intended to be matched with the “Last Name”
text label on the left. We make this association because the name attribute and
the text label match well, and because we are used to reading from left to right.
For the above HTML code, an automatic matching process could perform the
string match the same as a human would, and if the match is not confused by
the extra space in the label, the result will be successful. A variation of this
approach is indeed one of the mechanisms we tested below.

Unfortunately, HTML designers do not always match name attributes with
corresponding labels as clearly as in the case above. Instead of using ‘First-
Name’ and ‘LastName’ as name attributes within the input widgets, an HTML
designer might have used ‘fld1’ and ‘fld2’. The browser display would then have
been identical. But in that case, the string matching technique would have

ACM Transactions on Information Systems, Vol. 20, No. 1, January 2002.



Efficient Web Browsing on Handheld Devices • 99

Fig. 16. Text labels are not always placed before their input widgets.

failed. An automatic matching algorithm might instead make the match by
blindly using the string on the left of each input element as the match. This ap-
proach sometimes does work. However, consider that certain labels, especially
for radio buttons and checkboxes may appear to the right of the form item. For
example, consider Figure 16, which is an excerpt from the garden.com Web site.

We see in Figure 16 that the words “early”, “mid”, and “late” are each placed
to the right of the input widgets they are supposed to label. Using a naive al-
gorithm of left-association, we would associate the ‘early’ widget with “Spring”,
the “mid” label with the ‘early’ widget, etc.

Figure 16 illustrates another problem that often occurs with check boxes.
In many forms, check boxes are grouped, and a common label describes the
entire group. In Figure 16, the “Spring” label describes the three planting time
seasons. In addition, each checkbox has its own label (“early”, “mid”, etc.). In the
Figure, there are two such groupings, “Spring” and “Summer”, which in turn
have a common label (“Planting times”). Form summarization must attempt to
detect and display such labels.

These challenges are just a sample of the difficulties faced in rendering forms
and their labels on PDAs. We must contend with a design tradeoff—mismatches
can lead to incorrectly transmitted forms. This danger would encourage us
to include more, rather than less, of the original textual information on the
PDA page. On the other hand, the inconvenience and danger of user confusion
associated with long PDA screens would will us toward careful pruning of the
text that surrounds form widgets on the screen. This design tension can be
resolved only by making the selection of text labels for input widgets as reliable
as possible. We call the process of matching text labels with input widgets
“form analysis.”

3.1 Form Analysis

We developed and evaluated eight form analysis algorithms. Each algorithm’s
input is the internal representation of a form, and the input field for which
a label match is needed. The output is a piece of text that is excerpted from
somewhere within the form. That text is intended to describe the input field.

Each of our matching algorithms proceeds in two steps. The first step is
common to all algorithms:

1. Chunk Partitioning: the entire HTML page is broken into “chunks.” Chunks
are small pieces of HTML code that are delimited by HTML tags, such as
text paragraphs, table cells, or input elements. The result of this first step
is an ordered list of all the chunks in the HTML page. Chunks differ from
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STUs in that they include additional bookkeeping information (e.g., the
identifier used for an input element), and are customized to the needs of
form analysis.

2. Label Selection: for each input element chunk within the chunk list, one text
string from neighboring chunks is selected as the match that best describes
the element’s purpose. The matching string is selected from a chunk that is
at most n chunks away. All of our algorithms use n= 10, a value obtained
empirically.

For label selection, we used eight different matching algorithms. We call
these algorithms: N-Gram, Letter/Word, Word/Letter, Substring, Tables, Pre-
vious, Following, and NULL Algorithm. The algorithms differ in how they ac-
complish the matching of labels to input fields. All algorithms are detailed in
Kaljuvee et al. 2001. Here we explain just them briefly.

One set of algorithms exploits the fact that HTML programmers must pro-
vide an internal name to each input field. This name is needed for the Web
server’s HTML processing. Often, these internal names resemble at least a
piece of the correct label text (see Example 1 above). The algorithms that use
the internal name attempt to find the surrounding text that is most similar to
the internal name.

One example is our N-gram algorithm that uses an information retrieval
technique called “n-gram matching.” When comparing any two words, A and
B, both words are divided into overlapping substrings of length n. This pro-
cedure results in two sets of equal-length substrings. The cardinality of the
intersection between these two sets serves as a similarity score for A and B.
For example, consider the words “ants” and “grants” with n= 3. This technique
would generate tri-grams [Angell et al. 1983] gra/ran/ant/nts from “grants,”
and ant/nts from “ants.” The resulting matching score would be 2, from the
common tri-grams “ant” and “nts.” Notice that we do not perform any “nor-
malization” to compensate for different string lengths. That is, we do not di-
vide the score by the sum of the number of n-grams, as is typically done. We
found the simple cardinality of intersection to be a better predictor for proper
matching, especially if the strings involved are of very different lengths. If
the score is greater than or equal to a threshold T , then the score is con-
sidered significant and a match is made. Otherwise, the algorithm reports a
failure (score= 0).

The Substring algorithm also uses the internal input field name, but at-
tempts to find form text of which the internal name is a substring or an acronym,
for example ‘Password’→pwd. Letter/Word and Word/Letter attempt matches of
the form ‘First Name’→Fname, and ‘Phone Work’→PhoneW, respectively. The
NULL algorithm attempts no matching at all, and simply returns the internal
field name as the label.

Other algorithms use the fact that the placement of labels on forms often con-
forms to certain layout conventions. Our Table algorithm is an example. HTML
tables can force elements to be grouped visually on the page, to be stacked on
top of each other, or to be lined up neatly in a row. HTML pages without tables
are much less predictable in their appearance to the eventual human user. Our
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Table algorithm attempts to emulate how human onlookers tend to match text
labels with input widgets on a screen.

To see how this is done, recall that the table and chunk lists enable match-
ing algorithms to determine where input elements are located within a table.
When trying to match an input element E that is located within a table, the
Table algorithm first checks whether some text string is located within the
same table cell with E. If such a string exists, it is chosen to be the label for
E. If no string is found within the same cell, the Table algorithm checks se-
quentially to determine whether a string is located in a cell immediately to
the left, above, below, or to the right. The first string found in these probes is
taken to be E’s label, and a score of 1 is returned. If no label is found, a score of
0 results.

Previous and Following are also layout-related algorithms. They choose text
that, respectively, precedes or follows an input field as the appropriate label.

4. EXPERIMENTS

We conducted a variety of performance experiments to evaluate the effec-
tiveness of page and form summarization. These experiments included both
system-level evaluations, and user tests that helped us refine our designs. In
this section, we summarize our results. We focus first on the experiments that
probed our page summarization performance. In Section 4.2 we summarize
form-related results.

4.1 Page Summarization

For our page summarization evaluations, we tuned our algorithms as described
earlier, and then designed user experiments that would reveal which of the five
methods of Figure 4 worked best for users. In particular, we wanted to deter-
mine which method would allow users to complete a set of sample information
exploration tasks fastest, and how much I/O (pen gestures) users needed to
perform for each method.

We constructed an instrumented Palm Pilot and Nokia cellular phone emu-
lator and added it as a user front-end to the test system described in Figure 6.
The emulator does not simulate a complete Palm Pilot or cellular phone in the
sense that it could run programs written for these devices. It rather performs
only the functions of our browser application. The emulator does maintain a
live connection to our Web proxy, which in turn communicates with the Web.
If users were to follow links on the emulator display (which they did not for
this set of experiments), then the emulator would request the page from the
proxy and would display the result. We can toggle the display between the
Palm Pilot and the cellular phone look-alike, so that we can assess the impact
of the cellular phone’s smaller screen. We have not yet performed the cellular
phone experiments.

The emulator displays a photo-realistic image of a 3COM Palm Pilot or Nokia
phone on a desktop screen. (See Figure 17). Instead of using a pen, users perform
selection operations with the mouse. We consider this substitution acceptable
in this case, because our experiments required no pen swiping gestures. Only
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Fig. 17. Instrumented PDA emulator for our user experiments.

simple selection was required. The emulator is instrumented to count selection
clicks, and to measure user task completion times.

When using the emulator for an experiment, the subject or the operator se-
lects one of the methods (Incremental, Keyword, etc.) from the pull-down list
in the view panel. A task is selected in the task/URL selection field. The start
button begins the experiment, the stop button ends it. Each task for the se-
ries of experiments reported here involved a single Web page and one question
about that page. We limited tasks to cover only a single page to ensure that
we restricted measurements to summarization issues, as opposed to browsing
artifacts, such as network delays, false trails, and subjects’ adjustment to dif-
ferent page styles. Subjects used the mouse to expand and collapse portions of
each page, and to open or close STUs as they looked for the answers to questions
we posed about the page.

We selected Web pages for these tasks to be of varying length, but larger than
would fit on a single PDA screen. The questions we asked varied as well. Some
questions requested subjects to find a particular link on the page. Others asked
subjects to find particular pieces of content within the page. Each question had
a well-defined answer, rather than being open-ended. We selected Web pages
and questions without first viewing the results of the summarization. Table I
shows the list of 10 tasks that we asked users to perform.

Table II provides statistics about each task’s Web page. The average number
of STU’s on each of our tasks’ Web pages was 33. The average total page length
was 155 PDA lines. The number of sentences in each STU varied from 1 to
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Table I. The 10 Tasks Our 15 Subjects Completed on the PDA Emulator

Description
Task 1 From the Bureau of Census home page find a link to News for Federal

Government Statistics.
Task 2 From the Lonely Planet Honk Kong Web page find when the Hong Kong

Disneyland is going to open.
Task 3 From the Stanford HCI Page, find the link to Interaction Design Studio.
Task 4 From the WWW10 Conference home page, find the required format for

submitted papers.
Task 5 From the ‘upcomingmovies’ review of the movie Contender: How was the character

“Kermit Newman” named?
Task 6 From Marc Najork’s Home page find the conference program committees he

participated in.
Task 7 From the science article in Canoe find out: What percentage of bone cells can be

converted to brain cells?
Task 8 From the ‘boardgamecentral’ Web page find what “boneyard” means in the

dominoes game.
Task 9 From the ‘zoobooks’ Web page find where penguins live.

Task 10 From the Pokemon official site find the price of Pokemon Gold and Silver.

Table II. Number and Lengths of STUs for Each Task

Task 1 2 3 4 5 6 7 8 9 10
# of STUs 31 32 26 67 32 33 33 19 18 36
# of Lines 47 169 306 140 343 120 120 60 100 145

10. The number of lines in each STU varied from 1 to 48. A Palm Pilot device
can display 13 lines at a time with our browser; the cellular phone device can
display eight. Given the PDA’s screen size, a 48-line STU would be displayed
as 4 pages on the PDA and 6 pages on the cellular phone. The one-line STUs
would fit on a single page. In short, we ensured that we exposed users to STUs of
widely varying lengths. Some easily fit onto one screen, others required scrolling
when expanded.

For our experiment, we consecutively introduced 15 subjects with strong
World-Wide Web experience, and at least some computer science training to
our five STU exploration methods. Each subject was introduced to the emula-
tor, and allowed to complete an example task using each of the methods. During
this time, subjects were free to ask us questions about how to operate the em-
ulator, and how to interact with the browser for each of the methods. Once we
had answered all of the subject’s questions, we handed him a sheet of paper
that instructed him on the sequence in which he was to run through the tasks,
and which method to use for each. Subjects clicked the start button once they
had selected a task and method. This action displayed the collapsed Web page
for the task. Once subjects had found the answer to the task’s question by open-
ing and closing the structural hierarchy and individual STUs, they clicked the
stop button.

The instructions we gave to each subject had them use each method twice
(for different tasks). We varied the sequence in which subjects used the
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Fig. 18. Task completion times for all methods and all tasks.

methods. In this way, each task was tackled with different methods by dif-
ferent subjects. We took this step to exclude performance artifacts based
on method order, or characteristics of the matches between particular tasks
and methods.

4.1.1 User Performance. Figure 18 summarizes the average task comple-
tion time for each method. The figure shows that in six out of 10 tasks the
Incremental method performed better than the ALL method. The methods are
close in their effectiveness. These results seem to indicate that showing the
first line of the first sentence is often not effective, probably because STUs on
the Web are not as well structured as paragraphs in carefully composed media,
such as, for example, articles in high-quality newspapers. Thus, showing the
full text of the STU and letting the user scroll seems to be as effective as first
showing just the first sentence. Recall however, that the ALL method shows
the entire text of a single STU, not the text of the entire page. Thus the ‘+/−’
structural controls are still being used even for the ALL method.

We see that for one half of all tasks (5 out of 10), the Summary method gave
the best task completion time, and for the other half, the Summary/Keyword
method yielded the best time. The time savings from using one of these summa-
rization techniques amounts to as much as 83% compared to some of the other
methods! Using at least one of these techniques is thus clearly a good strategy.

Notice that both pairs Incremental/ALL, and Summary/Keyword-Summary
tend to be split in their effectiveness for any given task. In the case of Incremen-
tal and ALL, the completion time ratio between the methods was at least two
in five of our 10 tasks. In Task 2, for example, Incremental took about 80 sec-
onds, while ALL required 160 seconds for completion, a ratio of 2. On the other
hand, ALL was much better than Incremental in Task 7. Similarly, Keyword
and Keyword/Summary had completion time ratios of two or higher in five of 10
tasks. In contrast, Keyword and Summary more often yielded comparable per-
formance within any given task. Given that Summary and Keyword/Summary
are the two winning strategies, we need to understand which page character-
istics are good predictors for choosing the best method. We plan to perform
additional experiments to explore these predictors.
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Fig. 19. I/O activity required for all methods over all tasks.

Figure 19 similarly summarizes I/O cost—the number of pen taps subjects
expended on scrolling and the expansion and collapse of STUs. Notice that in
most of the cases either Summary or Keyword/Summary gave the best results,
reinforcing the timing results of Figure 18. The reward for choosing one of the
summarization methods is even higher for I/O costs. We achieve up to 97%
savings in selection activity by using one of the summarization methods.

Before processing further the results of Figures 18 and 19 to arrive at sum-
mary conclusions about our methods, we examined the average completion time
for each user across all tasks. Figure 20 shows that this average completion time
varied among users.

This variation is due to differences in computer experience, exploration se-
quence, level of concentration, and so on. In order to keep the subsequent inter-
pretation of our raw results independent of such user differences, we normalized
the above raw results before using them to produce the additional results below.
The purpose of the normalization was to compensate for these user variations
in speed. We took the average completion time across all users as a base line,
and then scaled each user’s timing results so that on the average, all task com-
pletion times would be the same. The average completion time for all users over
all tasks was 53 seconds.

To clarify the normalization process, let us assume for simplicity, that the
average completion time was 50 seconds, instead of the actual 53 seconds. As-
sume that user A performed much slower than this overall average, say at an
average of 100 seconds over all tasks. Assume further, that user B performed
at an average of 25 seconds. For the normalization process, we would multiply
all of user A’s individual completion times by 1/2, and all of B’s times by 2.

With these normalized numbers, we summarized the timing and I/O perfor-
mance for each method (Figures 21 and 22). Recall that I/O performance is the
sum of all mouse/pen actions (scrolling, opening and closing STU’s, etc.).

Notice that ALL and Keyword are comparable in completion time. One ex-
planation for this parity could be that our keyword selection is not good. A more
likely explanation is that for our generally short STU lengths, a quick scan is
faster than making sense of the keywords.
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Fig. 20. Differences in average task completion times among users all tasks.

Fig. 21. Average completion time for each method across all tasks.

Notice that on average, Summary and Keyword/Summary produce a
39 second gain over Incremental, and an 18 second gain over ALL. The two
methods are thus clearly superior to the other methods. In Figure 21 the two
methods are head-to-head in timing performance.

As we see in Figure 22, however, Keyword/Summary requires 32% fewer
pentaps (input effort) than Summary. This difference gives Keyword/Summary
an advantage, because user input controls on PDAs are small, and users need
to aim well with the input pen. On a real device, this small scale requires small-
motor movement control. Operation in bumpy environments, such as cars, can
therefore lead to errors. The combination of Figures 21 and 22 therefore give
Keyword/Summary the lead in overall performance.

The difference in timing vs. I/O performance for Keyword/Summary is some-
what puzzling, as one would expect task completion time to be closely related to
I/O effort. We would therefore expect Keyword/Summary to do better in timing
performance than Keyword. We believe that the discrepancy might be due to
the cognitive burden of interpreting keywords. That is, looking at the complete
summary sentence is easier than examining the keywords, as long as the sum-
mary sentence is not too long.
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Fig. 22. Average I/O expenditure for each method across all tasks.

We conclude from our studies that the Keyword/Summary method is the best
method to use for finding answers to questions about individual Web pages on
PDAs. While the keywords require some mental interpretative overhead, the
savings in input interaction tips the balance to Keyword/Summary, even though
this method’s timing performance is comparable to that of Summary.

4.1.2 System Performance. Recall that the deployment platform for our
system is a wireless PDA. The amount of information that is transferred from
the Web proxy to the PDA is therefore an important system-level parameter
that must be considered in an overall evaluation. This information flow im-
pacts the bandwidth requirements, which is in short supply for current wireless
connections.

Table III summarizes the bandwidth-related properties of each task’s Web
page. Column 1 shows the total number of bytes occupied by a fully displayed
HTML page when images and style sheets are included. Column 2 shows the
size once images and style sheets are removed from the total. The third col-
umn lists the number of bytes our system sends when transmitting STUs. The
average 90% savings of Column 3 over Column 1 stems from stripping HTML
formatting tags, and discarding images. If we just consider the HTML and ig-
nore images, the average savings is 71%. Note that these transmission times
are not included in our timing data, since we were using the emulator for our
experiments. The numbers in Column 3 are for the ALL method. The Key-
word, Summary, and Keyword/Summary methods require additional data to
be transmitted: the keywords, and the start and end indexes of the summary
sentences in the transmitted data. On average over all tasks, this additional
cost is just 4% for Summary, 24% for Keyword, or 28% for Keyword/Summary.
Even for the worst case this still leaves a 87% savings in bandwidth required for
our browser.

Notice, that an 87% reduction in required bandwidth is highly significant
since we are operating our browser in a wireless environment. To see this
significance, consider that in terms of transmission time over wireless links,
an average size page (over the 10 tasks) would take seven seconds for the ALL

ACM Transactions on Information Systems, Vol. 20, No. 1, January 2002.



108 • O. Buyukkokten et al.

Table III. Bandwidth Requirements for Different Browsing Alternatives

Page Size Page Size Packet Size Size Savings
Task (Total Bytes) (HTML Bytes) (ALL) (Compared to Full Page)

1 51,813 18,421 1193 97.7%
2 45,994 18,309 4,969 89.2%
3 66,956 12,781 9,762 85.4%
4 17,484 11,854 3,736 78.7%
5 55,494 21,276 10,913 80.3%
6 23,971 6,583 1,079 95.5%
7 75,291 35,862 5,877 92.2%
8 44,255 9,394 1,771 96.0%
9 19,953 7,151 3,042 84.8%
10 114,678 17,892 4,342 96.2%

method on one popular wireless network. Sending all of the HTML as well
would take 24 seconds over the same network. If images and style sheets were
added, transmission of an average page would take up 77 seconds! Compared to
a browser that sends the full page, our browser’s bandwidth parsimony would
therefore amount to an 11-fold improvement. Even a browser that discarded
images and style sheets, but transmitted all of the HTML tags would require
three times more bandwidth than our solution. The computation time for trans-
forming the original Web pages on the fast proxy is negligible, compared to the
transmission time.

4.2 Form Summarization

The experiments for evaluating our form summarization aimed at gauging the
effectiveness of our algorithms for matching Web page text to form input la-
bels. Matching results are objective enough that no user experiments were re-
quired. All experiments were run over unmodified forms that we retrieved from
the Web.

4.2.1 Performance Experiments. In an initial experiment, we tested the ef-
fectiveness of our algorithms on 100 forms. The forms were selected at random.
We randomly selected Web pages from a cache of 40 million pages. If a page did
not have a form, it was discarded; otherwise it was kept. If a page was located
at the same site as a previously selected page, it was discarded, so that HTML
design conventions on any one site would not bias our performance studies. In
the 100 forms we collected, there were an average of four input elements. We
called these our “simple” forms, to distinguish them from the “complex” forms
used for our second experiment.

For each of the input fields in the simple forms, a human being manually
matched the correct text label. We then applied all of our matching algorithms
to each input element. As mentioned, we used a maximum chunk span of n= 10.

Once all matching scores for a given input element had been computed, we
took the match with the highest score as the “winner.” In this first set of ex-
periments, we made no attempt to normalize the scoring mechanism across
the algorithms. Thus, for example, a successful N-gram algorithm (with its
score greater than threshold T = 2) will always beat a table algorithm (with
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Table IV. Each Algorithm Matching 115 Input Fields

Site Letter/ Word/
(Forms) N-Gram Word Letter Substring Tables Previous Following Null

TOTALS 57/60 4/4 0 37/39 48/65 71/115 10/115 45/115
Success 49% 3% 0% 32% 42% 62% 9% 39%
Failure 3% 0% 0% 2% 15% 38% 91% 61%

Pass 48% 97% 100% 66% 43% 0% 0% 0%

maximum score of 1). A better scheme to combine algorithms is described in
Section 4.2.3.

Finally, we compared the “winner” to the correct answer. We found that for
this initial large batch of forms, our matching success was 95%. A large number
of forms on the Web that one might wish to fill out on a PDA are as simple as
the forms we matched in this first experiment. Examples are—search forms,
and simple order forms.

Nevertheless, the high success rate with simple forms encouraged us to tackle
more complex forms. As the base data for two additional experiments, we man-
ually selected 21 Web sites that contained 48 fairly complex forms with between
two and 30 elements. All forms taken together, this collection included 330 input
elements, of which 307 were embedded in HTML tables. Of all input elements,
40% were one-line text input fields, 2% were password input fields, 22% were
select fields (pull-down lists of choices), 5% were editable, multi-line text areas,
15% were radio buttons, and 16% were checkboxes.

For each input element in each form, we again manually found the correct
labels. Then we ran two experiments on these complex forms. The first exper-
iment aimed at measuring the effectiveness of each individual label-matching
algorithm when used by itself. The second experiment examined the effective-
ness of combining the algorithms with a score maximization scheme.

For the first experiment, we used 115 of our 330 input elements as the
test set. We ran all of our algorithms on each of the 115 input elements. We
recorded how many times each algorithm appeared to have generated a suc-
cessful match, and how often this match was correct, as compared with the
human-generated match. We also recorded failure reasons when none of the
algorithms succeeded.

4.2.2 Experimental Results. Table IV shows the results of our 115 element,
individual algorithms experiment on complex forms. Each row of Table IV de-
scribes the performance of our algorithms for the forms on one Web site. Each
column contains the results for one algorithm.

Each column shows four summary results for the respective algorithm. The
first summary row (TOTALS) consists of two numbers. The first number indi-
cates how often the respective algorithm produced a correct match. The second
number indicates how often the algorithm concluded that it had a match. For
example, the N-gram algorithm concluded 60 times that it had a match, and
its match was correct for 57 of these 60 matches. For the 55 (115-60) remain-
ing input elements, the N-gram algorithm could not produce a good match (the
score was below the threshold T ).
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Table V. Matching Performance for Algorithm Combination over 330 Input Elements

Site Letter/ Word/ Total
(Forms) N-Grams Word Letter Substring Tables Previous Following Null Matches

TOTALS 163/183 5/5 3/3 0/6 49/76 27/36 12/12 5/10 264/330
Success 49% 2% 1% 0% 15% 8% 4% 1.5% 80%
Failure 6% 0% 0% 2% 8% 3% 0% 1.5%

Not Applied 45% 98% 99% 98% 77% 89% 96% 97%

The second row in Table IV is the success rate of the respective algorithm
when measured against the entire collection. The N-gram algorithm, for exam-
ple, had 57 successful matches, which translate to an approximate success rate
of 49% over all 115 input elements.

The third row is the failure rate. It shows how often the respective algorithm
produced an incorrect result. For example, when processing the 115 input el-
ements, the N-gram algorithm produced 3 incorrect results, amounting to a
failure rate of 3%.

The fourth row, finally, is the algorithm’s “pass” rate. It shows how often
the algorithm did not venture a match at all. Note that the score for Previous,
Following and NULL is zero because they can always be applied.

Upon conclusion of these experiments, we analyzed the most frequent failure
modes, and thought about how our various algorithms might be combined to
form an optimized matching system.

4.2.3 Combining Matching Algorithms. Observe in Table IV that in many
cases, multiple algorithms come up with the correct answer. The total number
of successful matches in Row 1 of Table IV is 272, significantly more than the
115 input fields to be matched. At the same time, we found cases when one
algorithm performed significantly better than others.

These observations raise the question of how best to combine the algorithms
such that overall matching performance is optimized. Several strategies for
combination are available, and in particular we empirically developed one that
orders the strategies according to their observed usefulness.

With this simple score maximization strategy, algorithms N-gram,
Letter/Word, Word/Letter, Substring, and Tables are run, one at a time,
for each input element. If any of these algorithms produces a match for an
input element, we select the highest-scoring match as the winner. If the first
five algorithms did not produce a match, we attempt Previous, Following,
and NULL in order, picking the first match we find. We isolated Previous and
Following from the other five algorithms in this way, because of their high
failure rate. The NULL algorithm is the last in the application sequence,
because it can always be applied, and therefore does not have a “natural”
ability to be discriminating. Also, recall that the label this last algorithm
produces is the internal HTML input element name attribute, which is not
normally intended for display on the screen. We therefore gave lowest priority
to this algorithm.

Table V shows the results of our combined strategy running over the full 330
input element complex-form data set.
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Fig. 23. Limited scope failure.

The organization of Table V similar to Table IV. The differences are as fol-
lows. On the far right, a new column shows that 264 of the 330 input fields
were successfully matched. This corresponds to an 80% success rate for these
complex forms.

Notice that, in contrast to Table IV, there is no overlap in the success numbers
for each algorithm. For any given input element, only one algorithm is credited
for a successful match.

We see that the N-gram algorithm provides the lion’s share of all successful
matches (49%). The Table algorithm is the second-most successful, with a fail-
ure rate comparable to N-gram. Letter/Word, Word/Letter, and Following are
“safe” algorithms to try, in that they did not produce failures, even though their
success rate was small.

While this optimization strategy works reasonably well for complex forms,
and quite well for simple ones, it is an open question whether some other strate-
gies might perform better. We could, for example, weight the results of each
algorithm, depending on the algorithm’s success/failure ratio. The results of
high-ratio algorithms would carry more votes in the voting process than results
from low-ratio algorithms. We plan to continue our experiments, especially the
development of these strategies for optimizing overall performance.

In summary, we found that for the simple forms (as they most frequently
occur on the Web), the described algorithms, achieve 95% accuracy in generating
understandable form summaries. For complex forms with many input fields,
summarization success is around 80%. For failure cases, information beyond
the summary must be provided for the user to understand the form. The N-
gram algorithm is the single best matching method. Using a combination of the
described algorithms, however, yields significantly improved results.

4.2.4 Common Breakdowns. Although the combined matching algorithm
performs well, it is instructive to see why failures occur. The three main reasons
are: overly limited scope, image faults, and group labels for radio buttons or
check boxes. An example of overly limited scope would occur in the following
case (Figure 23):

The corresponding simplified HTML looks as follows:
<tr>
<td>Full Name <br>(e.g. John H. Doe)</td>
<td><input type="text" name="fname"></td>
</tr>

Our Table algorithm would note that the input element is in a cell all by itself.
It would therefore retrieve the chunk to the left of the element. Since “First
Name” and “e.g. John H. Doe” are separated by a break tag (<br>), our chunk
partitioning procedure will separate the two pieces of text into two chunks.
The label chosen for the input field would thus incorrectly be chosen to be “e.g.
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Fig. 24. Missing individual labels.

Fig. 25. Text field group with group label.

John H. Doe”, which is much less desirable than the obviously correct match
“First Name”. In our algorithm combination experiment (see below), about 7%
of our matches failed due to a limited scope breakdown.

An image fault occurs when the correct match is text within an image. We
currently do not perform optical character recognition (OCR) on images. None
of our algorithms will, therefore, find such text. About 3% of our matches failed
due to image faults.

A radio button error occurs when groups of radio buttons do not have a
common label, or when they are missing labels for the individual buttons. As
described, our algorithms process radio buttons by matching the first button’s
“name” and “value” attributes to surrounding text chunks. This process at-
tempts to find a group label for all of the buttons, as well as an appropriate
label for each individual button. Many radio buttons and checkboxes are in-
deed organized in groups with such a group label. However, when there are
no group or individual labels, our system tends to produce mismatches, as it
insists on finding these labels. Figure 24 shows an example for missing individ-
ual labels. None of our algorithms finds a label for the drop-down menus, since
there are no labels to chose from. However, notice that even though we label
this instance as a “failure,” in reality the user will see the menu values in the
widget displayed on the PDA, and will be able to make a selection just as with
a full display.

A dual case occurs when text or select fields are grouped, as might be the
case with an HTML form for inputting postal addresses. Figure 25 shows an
example.

The text “Home Address” is a group label for the following input fields. Each
input field has its own label. A PDA display that filters out the “Home Address”
group label would leave the user wondering which address is being requested.
Unfortunately, unlike groups of radio buttons, groups of text fields are not iden-
tified in the HTML code by common input element “name” attribute values.
Automatic analysis, therefore, easily misses such groupings. We have not as
yet systematically addressed this problem of group labels for text fields in our
system. In some cases, special circumstances cause us to produce good results
anyway. We will not go into detail on these cases.

Among these group-related failures, the missing group label for check box
groups is the most common. Our 330 input element test set included 102 radio
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buttons and check boxes. Of these, 14 were missing a group label (14%). Of
our 203 text fields, 15 (7%) had group labels, of which we missed nine. Overall,
about 48% of our matching failures were due to grouping problems.

To conclude our discussion of failure modes, we observe that failures will not
be catastrophic. If a user is confused by the labels displayed on the PDA (or
is puzzled by the results obtained after filling out the form), he can switch the
display to a full HTML rendering. As an intermediate option, we plan to provide
progressive disclosure of text around the input field. Transmitting the full page
to the PDA, and scrolling through the full page, will be more time consuming
than manipulating our “synthesized” forms, but will be an option. Of course,
keep in mind that even the full HTML rendering may be error prone on a small
display. For example, if the complete form is not visible on the screen, the user
may get disoriented. In Figure 16, for instance, if all the checkboxes cannot be
seen, the user may not be able to tell if a label corresponds to the checkboxes
on its left or on its right.

5. RELATED WORK

Our power browser draws on two research traditions. The first is the search
for improving user interaction with text, by designing non-linear approaches
to text displays and document models. Projects in the second tradition have
examined design choices for displays on small devices.

One body of work in the first tradition has explored effective ways of dis-
playing documents and search results through the use of structured browsing
systems. See for example, Chen et al. [1999]; Egan et al. [1989]; Pratt et al.
[1999]. The long-standing Hypertext community [Conklin 1987] has focused on
tree structures for interacting with multiple documents [Feiner 1988] and large
tables of contents [Chimera et al. 1994]. The Cha-Cha system allows users to
open and collapse search results. In this sense, that system is similar to our dis-
playing individual Web pages as nested structures. But Cha-Cha applies this
concept over multiple pages, and the display is pre-computed. The part of our
power browser that we introduced in this paper focuses on a single Web page,
and all displays are dynamically computed.

Similarly, Holophrasting interfaces [Smith et al. 1984] have aimed to provide
visualization of textual information spaces by providing contextual overviews
that allow users to conceal or reveal the display of textual regions. We use
the Holophrasting principle for our STUs. Rather than progressively disclosing
a fixed body of text, however, some of the methods we explored here apply
Holophrasting to transformations of the text, such as summaries or keywords.

Numerous approaches to browsing the Web on small devices have been pro-
posed in work in the second of the above traditions. Digestor [Bickmore and
Schilit 1997] provides access to the World-Wide Web on small-screen devices.
That system reauthors documents through a series of transformations, and
links the resulting individual pieces. Our technique is more in the tradition of
Fisheye Views [Furnas 1986], where a large body of information is displayed
in progressively greater detail, with surrounding context always visible to
some extent.
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Ocelot [Berger and Mittal 2000] is a system for summarizing Web pages.
Ocelot synthesizes summaries, rather than extracting representative sentences
from text. The system’s final result is a static summary. Ocelot does not provide
progressive disclosure where users can drill into parts of the summary, as we
do in the power browser. Another system, WebToc [Nation et al. 1997], uses
a hierarchical table of contents browser; that browser, however, covers entire
sites, and does not drill into individual pages. More information about our own
summarization of forms is found in [Kaljuvee et al. 2001].

The system described in [Kaasinen et al. 2000] applies page partitioning to
Web pages as does out partition manager. The purpose of that system’s parti-
tioning efforts, however, is to convert the resulting fragments to fit the ‘decks’
and ‘cards’ metaphor of WAP devices.

6. CONCLUSION

We developed a new approach for summarizing and browsing Web pages. We
apply ‘macro-level’ summarization, which relies on structural analysis of Web
pages. These summaries allow users to expand and contract pages based on
their relative structural nesting. An additional, integrated ‘micro-level’ sum-
marization uses information retrieval techniques to outline portions of the text
for the user.

Our user experiments showed that a combination of keyword extraction
and text summarization gives the best performance for discovery tasks on
Web pages. For instance, compared to a scheme that does not summarize, we
found that for some tasks our best scheme cut the completion time by a factor
of 3 or 4.

A special problem with Web page summarization is the display of HTML
forms on small screens. We introduced algorithms needed for finding short
string extractions among a form’s text. These extractions are then used as
labels for input fields. We introduced eight algorithms that, in combination,
produce good form summaries in 80%–95% of the cases. Success rates depend
on the details of the form design. Where summarization fails, more of the form’s
expository text must be revealed on the PDA screen.

Our overall results suggest that summarization approaches are key to suc-
cessful PDA-based user interactions with the World-Wide Web. Information
task completion times and input effort can be significantly reduced if summa-
rization techniques of various forms are employed.
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