
E-Mail Research:
Targeting the Enterprise

Martin Wattenberg, Steven L. Rohall,
Daniel Gruen, and Bernard Kerr

IBM Research

ABSTRACT

The research program at IBM’s® Collaborative User Experience (CUE) group
supports an e-mail system used by millions of people. We present three lessons
learned from working with real-world enterprise e-mail solutions. First, a prag-
matic, system-level approach reveals that e-mail programs are generally used id-
iosyncratically, often for many different goals at once. This fact has strong impli-
cations for both the design and assessment of new features. Second, we discuss
how viewing e-mail as an element of corporate collaboration—not just communi-
cation—provides insights into problems with current systems as well as potential
solutions. Third, we describe constraints imposed by the realities of software de-
velopment and how they shape the space of feasible new designs. Finally, we illus-
trate these lessons with an overview of CUE research strategies in the context of

HUMAN-COMPUTER INTERACTION, 2005, Volume 20, pp. 139–162
Copyright © 2005, Lawrence Erlbaum Associates, Inc.

Martin Wattenberg is a computer scientist with an interest in information vi-
sualization and collaboration; he is a researcher in the Collaborative User Ex-
perience research group of IBM. Steve Rohall is a computer scientist with an
interest in synchronous collaboration, information visualization, and network
communications; he is a software architect in the Collaborative User Experi-
ence research group of IBM. Dan Gruen is a cognitive scientist with an inter-
est in interface design, collaboration, and human activity management; he is a
researcher in the Collaborative User Experience research group of IBM. Ber-
nard Kerr is a designer with an interest in interactive systems, visualization,
and collaboration; he is a design researcher in the Collaborative User Experi-
ence research group of IBM.

an extended case study of one specific new technology: Thread Arcs. Although
not all researchers work with an enterprise-level product team, we believe the ex-
periences described here will be useful to anyone wishing to see their ideas ulti-
mately implemented on a broad scale.

1. INTRODUCTION

How do you improve an e-mail system used by 90 million people? This ar-
ticle describes the e-mail research program of the Collaborative User Experi-
ence group (CUE) in IBM® Research, which aims to do just that, targeting the
widely deployed Lotus Notes® platform. The mission of improving an exist-
ing broadly-used system presents unique constraints as well as opportunities.
(Enterprise software, like politics, is the art of the possible.) In this article, we
discuss some insights that sprang from the perspective of working with a
product group that sells technology to entire corporations rather than individ-
ual consumers, as well as lessons learned from the process of working with a
large-scale system. Our hope is that anyone wishing to see new e-mail features
broadly implemented will find our experiences of use.

140 WATTENBERG, ROHALL, GRUEN, KERR

CONTENTS

1. INTRODUCTION
2. OVERLOAD AND IDIOSYNCRATIC USAGE
3. A SOCIAL AND COLLABORATIVE PERSPECTIVE
4. TECHNICAL CONSIDERATIONS FOR ENTERPRISE SOFTWARE

4.1. Example 1: Information Visualization
4.2. Example 2: Text Analysis and CPU Limits
4.3. Example 3: Instant Search
4.4. Moving Past Roadblocks

5. THREAD ARCS: A CASE STUDY
5.1. Empirical Investigation
5.2. Design Mockups
5.3. Vision Piece
5.4. Prototype

Modifications to Existing E-Mail Programs
ReMail 1.0 Prototype
ReMail 2.0 Prototype: New, Stand-Alone, E-Mail Client

5.5. Thread Arc Testing
5.6. What Makes a Successful Strategy?

6. CONCLUSION
6.1. The Pragmatic System-Based Approach
6.2. Future Directions

Because it is targeting a huge, diverse base of users, the research at CUE
has generally taken the view that e-mail must be understood as a complex,
multifaceted system. Beginning with the work of Whittaker and Sidner
(1996), our group investigated the ways in which e-mail is “overloaded”—that
is, used for many functions besides simple person-to-person communication.
We also explored the high degree of idiosyncrasy in e-mail usage: there are
huge individual differences in how electronic messages are handled. A conse-
quence of overload and individual differences is that any approach to improv-
ing e-mail must be empirical and system-oriented, because any change to the
system may have unexpected side effects.

A second aspect of CUE’s research is that it takes place in the context of
Lotus Notes, a long-lived platform for very general types of collaboration.
This context has led us to emphasize how e-mail functions as a tool for collab-
oration as well as communication. For example, we have studied extensively
how different users share the same inbox. These studies have revealed both
important unmet needs for concurrent usage in existing e-mail programs, as
well as suggesting new features and constraints that apply even to single-user
e-mail.

Finally, we talk about some of the technical issues that constrain enterprise
software. In particular, we discuss how issues of client-side processing versus
server-side processing can lead to a dramatic mismatch between promising
lightweight prototypes and the reality of implementation in a large-scale envi-
ronment. We also talk about how some issues that are often seen as mere “im-
plementation details,” such as internationalization, have had an impact on ac-
ceptance of new features.

Although these constraints are important, they are not paralyzing. We
close the article with an extended case study of a transfer of a new technology
from our lab to the developers who implement shipping software. This case
study gives examples of our own design process, false starts, and tactics used
both to improve new technology and to evangelize it within the company. We
feel the lessons and insights we have gained in the process can help any e-mail
researcher who hopes to see his or her results broadly applied.

2. OVERLOAD AND IDIOSYNCRATIC USAGE

E-mail has become ubiquitous; everyone investigating e-mail has exten-
sive experience with it. As a result, it is easy and not uncommon for designers
and developers to make assumptions about e-mail usage based purely on per-
sonal experiences. At CUE, we have believed strongly that intuitions about
e-mail must be backed by empirical findings. This belief stems not just from a
concern for social science methodology but also from an attitude related to re-
search aimed at an extremely large corporate audience: The products we de-

TARGETING THE ENTERPRISE 141

sign will not likely be used by people exactly like us. (This stands in contrast,
for example, to the open source “scratch your own itch” philosophy of design
[Raymond, 1998].) As it turns out, our emphasis on studying real-world usage
in diverse settings has led to some critical insights.

An early CUE empirical study (Whittaker & Sidner, 1996) found two re-
sults that became touchstones for future investigations and designs. One was a
phenomenon which they termed e-mail overload: People often used e-mail for
several distinct goals, often far removed from interpersonal communication.
(Unfortunately, overload has itself become an overloaded term, used also to
describe the feeling of being overwhelmed by a high volume of e-mail; in this
article, we adhere to the original meaning.) For example, inboxes became or-
ganizational devices for many people in their study, serving as “to-do” lists.
Gruen, Sidner, Boettner, and Rich (1999) corroborated this usage. Overload
is closely related to—in fact, enabled by—the phenomenon of “reinvention,”
(Sproull & Kiesler, 1991) in which users take features intended for one pur-
pose and use them for another. An example of how users reinvent to support
overloaded functions is how people often mark an important message as “un-
read” so it will be visually distinctive and continue to catch their attention—
completely changing the meaning of the “unread message” marker.

Whittaker and Sidner reported another result that hinted at a broad theme
in CUE’s future research: idiosyncratic usage. When they investigated the
standard e-mail folder-based organization scheme, they found that many us-
ers gave up filing altogether—but many other users did not give up, filing
their messages frequently. Yet a third group performed occasional massive re-
organizations. This threefold structure, with no group in the majority, is an
excellent example of individual differences in e-mail habits.

Even users who were willing to file are a heterogeneous group. Fisher and
Moody (2002) studied folder structures in detail and found a median of 73
folders with somewhere between 100 and 6,000 messages in each folder.
Bälter (1998), who implemented a prototype foldering system while a visiting
researcher in our group in 1999, made an additional important point: Many
times users file their messages initially but eventually decide that it is not
worth the effort. In a sense, this is another type of idiosyncratic usage: Even
for a single person and a single task, usage patterns may change significantly
over time as the e-mail environment becomes more crowded and less well-or-
ganized.

Further evidence of e-mail overload comes from analysis of messages
themselves. In Chu, Eagan, Stern, and Moody (2003), 15 e-mail users were
asked detailed questions about the purposes of specific e-mail messages.
Hand-clustering of the survey results revealed three rough categories of mes-
sages: those with a workflow character that required a response, those that
provided information with no response expected, and those that are part of a

142 WATTENBERG, ROHALL, GRUEN, KERR

traditional conversation. Within these, 12 fine-grained categories were found,
ranging in character from negotiation of meeting times to automatically gen-
erated records such as pay stubs.

These examples show that e-mail technology is used in idiosyncratic
ways and for diverse purposes, with individual features and components of
a program being reused in ways that might surprise their designers and de-
velopers. An e-mail program is a system in itself, with features whose value
lies in their interaction and reinvention. One implication, which we explore
further in the second half of this article, is that feature-by-feature design is
untenable; instead, any feature must be designed with careful attention to
its relation to other components. Another important implication is that de-
sign research must be intimately tied to empirical verification in real-world
settings. It is easy to imagine a scenario in which a designer invents a new
type of inbox that does an excellent job of showing unread messages but
does a poor job as a “to-do” list. Such a design would look good to the de-
signer and might fare well in a highly-targeted lab study. In a real-life de-
ployment, however, the new inbox might be a disaster, because it did not
support “to-do” list functionality.

3. A SOCIAL AND COLLABORATIVE PERSPECTIVE

A different set of data on e-mail usage came from studying groups who
shared a single inbox. This practice occurs in many situations, ranging from
an executive who allows an assistant to handle her mail to a group of workers
at a help desk who respond to the same pool of incoming messages. Our lab
was led to focus on these situations for several reasons. First, we believed that
watching humans help each other would provide insight into how a computer
could provide assistance. Second, our lab’s connection with the Lotus Notes
platform provided a natural impetus to study collaboration. Finally, informal
feedback from customers indicated that there was a business need to support
group inboxes. Our studies in this area proved valuable for several reasons:
Not only did they provide new evidence of overload and improvements
aimed at collaborative use but they suggested directions of future improve-
ments even of single-user mail.

Muller and Gruen (2002) interviewed several groups, including help desk
workers and members of college student organizations, who shared an inbox
for a single e-mail address. Several issues cited by participants were highly
specific to the context of sharing, for example, the construction of a group
identity and the use of canned or “boilerplate” text. Two oft-cited concerns,
however, were the difficulty of following the chain of conversation sparked by
an initial message to the shared address (so that a single person could handle
an entire conversation) and the challenge of coordinating responses and

TARGETING THE ENTERPRISE 143

workflow among several people. Although these problems were especially
urgent in the context of sharing an inbox, they pointed to areas of investiga-
tion that might benefit individuals as well.

The CUE lab also conducted an in-depth study involving semistructured
interviews with 16 assistants who helped high-level managers manage their
e-mail (Muller & Gruen, 2002). Throughout the study, we were struck by the
way features of e-mail that had been developed for a single user were ex-
ploited to support collaboration between assistants and their executives. A
feature allowing received mail to be edited was used to communicate addi-
tional information about a message (e.g., “this person spoke with you at the
trade show last week”). Messages were forwarded between executives and as-
sistants as a way of drawing attention to them and to discuss how they should
be handled. Folders were used by some executive-assistant pairs to create ad
hoc workflows. For example, the executive would place an item to be printed
into a folder marked “Print.” The assistant would print the message and then
remove it from the folder or place in it a folder marked “Done.”

A separate series of studies (Gruen et al., 1999) was conducted in which
managers and assistants were interviewed about their work and e-mail prac-
tices and observed going through their correspondence while seated together.
(Such meetings were standard practice and not artificially scheduled for the
study.) The study was conducted with the goal of informing the design of a
software “agent” to help users with their e-mail work, by modeling the kinds
of assistance the agent would provide on observations of how human assis-
tants helped the people they supported.

The assistants helped their managers in many ways, but two particular
types of action stood out. Assistants frequently directed attention, by
prioritizing lists of messages, actively interrupting their managers, or high-
lighting important sections of a message, such as the mention of a particular
colleague. They also frequently spent time in “context creation,” gathering
additional pieces of information relevant to a particular message. Both behav-
iors address problems that could potentially be solved through software solu-
tions as well; indeed, our work on threads, described later, can be viewed as a
method of context creation.

The results of these studies on collaboration have two main implications.
However, they emphasize the system-level perspective, articulated by Sproull
and Kiesler (1991), that e-mail is woven into the general corporate system of
coordinated activity. If our customers are to be believed, the design needs for
coordination have been insufficiently explored. At the same time, it is evident
that there is a fluid interplay among e-mail capabilities aimed at individuals
and those aimed at groups. Solving a problem that is urgent for groups, such
as tracking the context of a conversation, may turn out to be helpful for indi-
viduals as well.

144 WATTENBERG, ROHALL, GRUEN, KERR

4. TECHNICAL CONSIDERATIONS FOR ENTERPRISE
SOFTWARE

We have so far discussed aspects of the e-mail design space that relate to us-
age patterns. An additional set of constraints stems from the technical and lo-
gistical considerations that are involved in creating enterprise software. We
describe three examples, following, of features that were implemented in pro-
totypes, liked by users, yet did not end up as part of a shipping product. In
each case, what appeared to be “mere implementation details” turned out to
be major roadblocks in moving from a prototype implementation to a scal-
able, enterprise-wide product. One common theme is that prototyping is of-
ten done using client-side technology, whereas current architecture for
real-world implementation of large e-mail systems typically shifts much com-
putation to banks of servers. Unfortunately, the mismatch between client and
server technologies, often downplayed by researchers, turns out to be highly
significant.

4.1. Example 1: Information Visualization

A frequent suggestion for improving the e-mail experience is the use of in-
formation visualization technology. We believe that is a good idea and the
Thread Arcs case study in the second half of this article shows how visualiza-
tion may succeed in practice. Nonetheless, the literature is filled with exam-
ples of visualizations that have not appeared in a product. Examples range
from simple timeline-based systems, such as TimeStore (Yiu, Becker, Silver,
& Long, 1997), to the elegant and information-rich views of PostHistory and
Social Network Fragments (Viegas, Boyd, Nguyen, Potter, & Donath, 2004).
Here we discuss an example of an e-mail visualization from our own lab (Fig-
ure 1) that was rejected by the product team and some lessons we learned in
the process that may be relevant to other visualization projects.

This visualization, dubbed the Correspondent Map, is a kind of cross between
a treemap representation (Shneiderman, 1992) and the Contact Map of Nardi
et al. (2002). It displays all the people a user has corresponded with over the
past year, with each correspondent represented by a small blue rectangle.
The size of a rectangle indicates the volume of correspondence and the shade
indicates how long ago the last e-mail occurred. (Orange rectangles represent
unread messages regardless of age.) The rectangles are broadly arranged by
Internet domain and within each domain listed by frequency of correspon-
dence. The goal of the map is to provide a natural overview of one’s inbox, or-
ganized by people.

The visualization also allows several convenient methods of interaction.
Moving the mouse over a person’s rectangle brings up a quick list of recent

TARGETING THE ENTERPRISE 145

mail. Right-clicking provides a variety of options for sending mail to a partic-
ular person; a shift-click method is also provided for graphically defining lists
of recipients. Finally, drag-and-drop capabilities allow for a number of short-
cuts to common operations. For example, dragging a file from the Microsoft
Windows®file explorer onto a person’s rectangle will open up an e-mail com-
position window with that file attached.

When we created this demo, we believed it might have real potential as a
new feature. The product team, however, thought otherwise. The problems in
transferring this technology potentially apply to many visualization efforts.
The first objection raised was that the map’s typography was fragile and might
hinder internationalization. In particular, the readability of the names in the
rectangles depended on a set of ad hoc tricks—heuristics specifying when to
use a full name, part of a name, or initials—that would not generalize easily to
other languages. The second objection was based on seeing the map in natu-
ral usage (in a prototype system, ReMail 2.0, described later). The screenshot
in Figure 1 looks reasonable but shows the map at full-screen size. At a much
smaller size (as would be appropriate for a typical “side panel” in an e-mail
program), the map is significantly less valuable, largely because the labels are
no longer readable when all the rectangles are tiny. This objection shows why

146 WATTENBERG, ROHALL, GRUEN, KERR

Figure 1. Correspondent Map.

it is so important to consider components as part of a system, as described in
Section 1, rather than individually. A final problem is that the type of data re-
quired by the map—a full list of all correspondents, with additional summary
data on the history of messages with each one—requires a large amount of
memory and is not easily encapsulated in traditional mail programmer
interfaces; adding the map to a product would have required both significant
server-side programming and a strong commitment to a thick client interface.

4.2. Example 2: Text Analysis and Computational Limits

It has long been suggested that e-mail organization could benefit from au-
tomatic text analysis (e.g., Segal & Kephart, 2000, describe one shipping ex-
ample). Beyond the need for tools to help information retrieval and organiza-
tion, e-mail has additional structure that may facilitate computational
analysis. Our lab has created several prototypes that use text analysis. In each
case, we’ve observed the same pattern: intense initial interest and positive
feedback, combined with a failure to become part of a shipping product. We
believe that in each case, the same concerns—based on both software archi-
tecture and user-experience considerations—have arisen. We describe one
simple example here.

The CUE lab observed that dates embedded in message text are a critical
component of many e-mails. Indeed, for some of the types of e-mail identified
in Chu et al. (2003), such as meeting negotiations and record-keeping mes-
sages, dates and times may be the most critical piece of information. For such
mails, it would be useful to identify the dates for visual highlighting, search
and retrieval, and calendaring. (Similar ideas can be seen elsewhere, e.g., in
the context of note-taking in Lotus Agenda®). Because dates and times fre-
quently are described informally (“lunchtime on Tuesday”), the identification
task is not completely straightforward. Stern (2004) created a date recogni-
tion engine, based on a library of hand-tuned regular expressions, that
achieved 85% precision and 96% recall.

When this feature was demonstrated to potential customers at a trade show
and other corporate briefings, it generated tremendous interest from users
who felt it would remind them of events they would otherwise miss. This type
of customer feedback is usually influential on product team strategy but these
features have not been adopted as of this writing. Two considerations seemed
to influence the decision. First, as with the Correspondent Map, international-
ization considerations were an issue; although handcrafting a set of regular
expressions was feasible for a prototype in a single language, it was clearly
problematic for a large set of languages. Second, and probably more impor-
tant, was that Stern’s (2004) methods (despite their efficacy in our client-side
prototype), because of their reliance on regular-expression-based matching,

TARGETING THE ENTERPRISE 147

were too computational-intensive for the implementation that would have
been necessary in the large-scale server-side product architecture.

4.3. Example 3: Instant Search

A final example of an extremely popular feature that was not transferred to
a product specification was an “instant search” box that was part of a larger
prototype (ReMail 2.0, discussed later). Users could type a phrase into a text
field and—keystroke by keystroke—a list of messages containing that phrase
would be shown. (Similar features can be found, for example, in Microsoft
Entourage®.) This fast, incremental search was considered by many users
who applied it on their own mailboxes to be both pleasant and efficient for
navigating a large inbox.

Despite wide support for this feature, it came at a computational and archi-
tectural cost. We had implemented it in a context where all message subject
lines had already been loaded into main memory and so a search could exe-
cute in a fraction of second. Unfortunately, it was difficult to translate this
strategy into a model where most computation occurred on servers. Per-
forming a new search with every keystroke ran into constraints of bandwidth
and server-side computational cycles. It might have been possible to over-
come these hurdles but even then the latency associated with network opera-
tions would have meant that the search would often feel sluggish rather than
instantaneous.

4.4. Moving Past Roadblocks

All three examples discussed earlier underline the slippery nature of re-
search aimed at enterprise-wide systems. In each case, researchers created a
fully-functioning prototype that, for unanticipated reasons, turned out not to
scale. Some of the factors, such as concerns about internationalization, are
relatively easy to take into account in future investigations by researchers.
But the client-server mismatch is a deeper issue and one that we feel de-
serves further study. Are there architectures that might somehow combine
the centralization of server-side computation with the ease of development
of client-side software? It may be possible that the desirability of features
such as “instant search” will foster the development of just such an architec-
ture. Until such architectures are found, we believe that researchers need to
take the server-side nature of many current large-scale implementations
into account from the beginning.

148 WATTENBERG, ROHALL, GRUEN, KERR

5. THREAD ARCS: A CASE STUDY

We now turn to an extended case study of the development of a particu-
lar feature that has been handed off to the product team, a graphical navi-
gation device called a Thread Arc that displays a small map of the structure
of an e-mail conversation thread. The sequence of work on Thread Arcs be-
gan with an empirical investigation, continued with design sketches and
small working prototypes, and culminated in a fully working model that
was itself tested empirically. This was certainly not the only feature that our
lab has worked on, and it was not the only piece of research to have an im-
pact on the product team, but we have chosen to focus on the development
of this one component as an illustration of a successful strategy that ad-
dresses the three themes of enterprise e-mail: overload, collaboration, and
technical constraints.

5.1. Empirical Investigation

It is widely recognized that conversation threads are a helpful organiza-
tional device, both in e-mail and other online communication media such as
Usenet news. (Among many examples are (Donath, Karahalios, & Viegas,
1999; Smith, Cadiz, & Burkhalter, 2000; Venolia & Neustaedter, 2003.) In
empirical studies performed by our lab, we too had encountered our own
strong hints that threads were critical. For instance, the investigations of
shared inboxes had emphasized the utility of keeping reply chains in one
place and the studies of managers and assistants demonstrated the value of
gathering context around an individual message.

Several factors make threads particularly central to e-mail use. They com-
bine messages that are typically related both in content and in workflow, they
are easily understood by end users, and there are well-known algorithms to
compute threads efficiently (Zawinski, 1997). For these reasons and others,
thread-related interfaces are part of many current e-mails programs (e.g., Lo-
tus Notes and Microsoft Outlook®).

One of our first pieces of work on threading was a quantitative study, in
keeping with our belief in grounding design in the analysis of real-world sys-
tems. In 2001, Fisher and Moody (2002) created a software tool to analyze
e-mail archives of a set of participants taken from within IBM. Faced with the
challenge of obtaining enough data to calculate structural relations in their
participants’ e-mail while preserving the privacy of the e-mail content, they
created a data extraction program that participants ran against their own mail
which encrypted all sender and recipient names and subject line text, gave
each message a unique identifier, and preserved links between parent and re-
sponse messages. Thus the data files accessed by the experimenters contained

TARGETING THE ENTERPRISE 149

the necessary structural information to analyze thread sizes and structure
without disclosing any recognizable information about people or topics of
conversation. Sender and recipient names, for example, were converted to
one-way hashes, a method which ensured privacy but allowed cross-referenc-
ing between users so the experimenters could see how different users viewed
any given conversation thread.

The analysis showed that approximately a third of messages that had been
retained over a 2-month period were elements of threads with more than one
message. Even these “nontrivial” threads were typically short, with 56% con-
taining only two messages and only 13% containing five or more messages.
Two months of e-mail messages were collected from 57 participants (ranging
from 85 to 3,318 messages per user, reflecting differences both in how much
mail participants received and how much they retained.) The data collected
helped to establish parameters for the number of messages a thread visualiza-
tion would typically need to support. In particular, it suggested that a visual-
ization should be optimized for small numbers of messages, with the ability to
scale to very complex threads taking a second priority.

Subsequent studies within our group have corroborated Fisher and
Moody’s (2002) findings (Kerr, 2003). In addition, these studies revealed a bi-
modal distribution of threads: thread trees tend to be either “bushy” (many
messages are a response to a single document) or deep (each message has a
single reply, as in a chain of conversation). As suggested by Venolia and
Neustaedter (2003), this dichotomy may reflect different common uses of
e-mail; for example, informing a group of users and requesting feedback from
each versus having an extended back-and-forth conversation with a small
number of users. It may also depend on the particular threading algorithm we
used (Zawinski, 1997), because in certain cases, when a message from a thread
has been deleted, different algorithms may guess at different reply structures.

5.2. Design Mock-Ups

Besides knowledge of thread statistics, Fisher and Moody’s (2002) study
had a second benefit, namely the creation of a large reference database of
sample threads that could be used to create simple, stand-alone mock-ups of
designs that exploited thread structure. Several design mock-ups were created
in 2001, including a “map” of a thread (see Figure 2). This diagram showed
both reply relationships and chronology information by displaying a tree
overlaid on a timeline. The color-coding of the nodes represents the relation-
ship of the message senders to the recipient. Note that the time scale on the
x-axis is nonlinear, so that days with little or no activity are shown com-
pressed. This avoids the problem of large gaps in the time display experi-

150 WATTENBERG, ROHALL, GRUEN, KERR

enced in other systems which have used timelines (Kudo, Tanaka, & Kosecki,
1997; Jovicic & Baecker, 1999).

Other mock-ups from the same period explored how a visualization of the
conversation thread (or “thread map”) might fit into an e-mail client and inter-
act with other components. An example can be seen in Figure 3. In addition
to drawing a map of a thread, all of the messages in the thread were high-
lighted in the inbox.

5.3. Vision Piece

A lightweight method of design exploration is the creation of inspirational
mock-ups of potential future features, made without the constraints of actual
implementation. (One famous example is the Apple® Knowledge Navigator
video [Field, 1987]; Vannevar Bush’s [1945] description of a hypothetica
“Memex” may be considered another.) In 2001, we created our own such “vi-
sion piece” (see Figure 4), which was shown to a large audience at the
Lotusphere 2002 trade show.

Our experience provides an excellent example of why this method is
valuable. The mock-up showed a hypothetical e-mail client integrating
mail, chat, and presence awareness, along with several “magical” features
such as the ability to automatically recommend who should participate in a
meeting. Audience reaction was very positive to all features but the one that
drew an audible gasp was the ability to send an entire thread of mail to an-
other person by dragging an iconic representation of the thread into a chat
window—ironically, the single most easily-implemented aspect of the
demo! This reaction underscored the importance of threads as an eas-
ily-grasped organizing principle. It also seemed to highlight the importance
of e-mail as a collaborative system: Dragging a thread into a chat window
illustrates cooperation between user interface components that usually are
separate, as well as the importance of features that go beyond one-to-one,
asynchronous communication. Although an audience gasp is anecdotal in
the extreme, it was clear that the broad positive reaction to the vision piece
as a whole helped engage the attention of the product team—probably far
more than any of the studies cited earlier.

TARGETING THE ENTERPRISE 151

Figure 2. Thread tree superimposed on a timeline.

5.4. Prototypes

Modifications to Existing E-Mail Programs

In keeping with our belief that e-mail designs need to be tested as part of a
functioning system, we built a thread viewer as a modification to the standard
Lotus Notes e-mail template (Figure 5). This visualization shows messages as
square nodes in a tree and displays information on senders and recipients us-

152 WATTENBERG, ROHALL, GRUEN, KERR

Figure 3. Early design prototype showing thread visualization incorporated into an
e-mail client.

Figure 4. Portion of a scene from the vision piece, showing a chat that resulted from a
meeting announcement that had arrived in e-mail. Note how the thread containing the
meeting announcement and related documents has been dragged into the chat as a sin-
gle entity.

ing a dual color scheme. The color of the upper left corner of a node repre-
sents information about the sender and the color of the lower right corner rep-
resents information about the receiver. The prototype turned out to be
valuable at identifying faults in the interface. For example, it became immedi-
ately clear that the color scheme was problematic for the many messages with
multiple recipients; in addition, there was widespread confusion about the
color scheme in general. Just as bad, technical constraints limited our ability
to assess the new view’s benefits. For instance, it proved difficult, in the con-
text of Notes, for the thread view to update to reflect the thread of the cur-
rently selected message in the message list.

ReMail 1.0 Prototype

The technical constraints that hindered the Notes helper component con-
vinced us that we needed an e-mail client that would provide us complete
control over the interface. In the summer of 2001, work began on the “ReMail
1.0” (for “reinventing e-mail”) e-mail client utilizing dynamic HTML and
JavaScript® for the user interface to allow rapid development and Lotus
Notes for the underlying e-mail storage, so that users could try the system with
their real corporate mail (see Figure 6). In addition to thread-based naviga-
tion, ReMail 1.0 incorporated several other features that are beyond the scope
of this article, including methods of message preview, capabilities for user an-
notation of messages, synchronous collaboration, and integration of chat and
e-mails. Here we focus on the novel aspects relating to threads but further de-
tails may be found in Rohall, Moody, Gruen, and Kellerman (2001).

TARGETING THE ENTERPRISE 153

Figure 5. Thread visualization integrated into the Lotus Notes® R5 mail template (2000).

Although the ReMail 1.0 prototype never became sufficiently polished for
day-to-day e-mail use, we were able to gather useful feedback through a more
limited deployment where we allowed users to run it on a subset of their
inbox data and through semistructured interviewing. In addition, we received
informal feedback on the prototype and its features at the Lotusphere 2002
trade show, where we allowed potential customers to try out the application.
In both cases, we opted to gather general informal commentary rather than
run focused, controlled experiments. The main reason was simply that we felt
this prototype was in the early stages of design, so we wanted to cast as broad
a net as possible.

The ReMail 1.0 interface relied strongly on thread structure, which it ex-
ploited in several ways. When a message was selected, a thread map visualiza-
tion would be drawn next to it. The map was drawn with a transparent back-
ground, so that even for large threads, it would not completely obscure the
rest of the interface. Selecting a node in the thread map would cause the mes-
sage list to scroll to the selected message. Users liked this feature, particularly
when a thread was long and not all of the messages were visible in the mes-
sage list.

154 WATTENBERG, ROHALL, GRUEN, KERR

Figure 6. ReMail 1.0 prototype (2001).

In addition, when the user selected a message, the other messages in that
thread shown in the inbox were highlighted in a subtle brown (darker gray in
the diagram). Users could also “gather” a thread with a single click, so that all
messages were placed together instead of being scattered throughout the mes-
sage list. A gathered thread is shown in Figure 7.

The gathered thread was placed in the list at the location of the most re-
cently-received message. This feature allowed users to keep track of an active
thread without cluttering their message list. By default, a gathered thread was
drawn in a collapsed fashion taking up two lines in the message list, one for
the original “root” message and one for the most recent message in the thread
(Microsoft Outlook now has a similar feature). As with the map, the ability to
easily gather a thread within the inbox echoed the “context creation” that was
observed in human assistants in earlier studies (Gruen et al., 1999).

One frequent comment from potential customers turned out to be helpful.
The simplified thread map in ReMail 1.0 was essentially topological, empha-
sizing the parent–child relationships in a thread. This was not so much a con-
scious design decision as a compromise forced by implementation constraints
but it turned out to serve as a useful test. Many people who tried the prototype
at the Lotusphere trade show commented that the tree structure obscured
timing relationships, which they believed to be at least as important—giving
substance to our earlier intuitions. This type of comment is exactly what we
hoped to elicit through informal interviews and is one we might have missed
in a more narrowly focused test.

ReMail 2.0 Prototype: New, Stand-Alone, E-Mail Client

Although the ReMail 1.0 prototype was a helpful platform for experimen-
tation, it soon became clear that for a realistic test of new components—in-
cluding thread-based navigation and organization—we would need an archi-
tecture able to work with users’ full existing e-mail databases. Most of our
potential users had thousands or even tens of thousands of archived messages.
The ReMail 1.0 interface, built on DHTML, was not able to scale to such

TARGETING THE ENTERPRISE 155

Figure 7. A gathered thread, expanded so as to show all thread messages.

large sets of data. Users also informed us that because ReMail 1.0 lacked cer-
tain features, such as folders, they would be unlikely to use the prototype for
an extended period of time. Unfortunately, implementing these critical com-
ponents in JavaScript seemed problematic.

Because of these concerns, we decided that we needed a new testbed sys-
tem and that it should be a ground-up rewrite. In 2002, we began a new proto-
type, dubbed ReMail 2.0. Figure 8 shows a screenshot. The new prototype
was built with a Java user interface on the Eclipse platform and used a rela-
tional database for flexible searching and scalable storage of messages. Mes-
sages were pulled from a range of sources, including Lotus Notes mail, Lotus
QuickPlaces®, and four standard mail and news formats. ReMail 2.0 was in-
stalled and used by dozens of users within IBM, who provided copious feed-
back (Gruen et al., 2004).

Although our focus in this article is on the parts of the interface related to
threading, a brief walk-through of the application will be helpful in what fol-
lows. Following convention, the interface includes a list of messages (top cen-
ter) and a pane for displaying message bodies (bottom center). A calendar is
anchored on the left. The message list is tightly integrated with the calendar,
allowing messages to be dragged and dropped onto a day or time to create a
calendar item; conversely, calendar items can be clicked to scroll to relevant
messages. This feature, explicitly meant to support the kind of overload found
in Whittaker and Sidner (1996), was one of the most frequently praised by our
users. On the right is a pane for organizing messages into folder-like groups.
(For further details on the ReMail 2.0 interface, see Kerr, 2003.)

More importantly, the flexibility of a Java-based user interface gave us a
chance to try several different ways to map a thread. One method was a revis-
iting of the diagram in Figure 2, showing thread-tree topology using a branch-
ing diagram. A second method was the Thread Arc (Figure 9). A Thread Arc
shows messages as dots, reply relationships via curving links, and message se-
quence by a linear left-to-right arrangement (addressing the objections of us-
ers of the ReMail 1.0 prototype). The fact that it shows sequence rather than
arrival time distinguishes it from such visualizations as (Smith et al., 2000) and
is the key to its compactness. Its compactness, in turn, was viewed positively
by the product team. Unlike thread visualizations such as Figure 2, a Thread
Arc (Figure 9) can fit into a small corner of the message-body pane. As with
the Correspondent Map, discussed earlier, the fact that we could observe
Thread Arcs as part of a larger system was critical to discovering the impor-
tance of a visualization scaling down in physical size.

The dots that represent messages show the selected message as a hollow
circle and can be colored according to different variables; for example in Fig-
ure 9, the same thread is shown with message one and then message five se-
lected. They are also clickable, allowing easy navigation between messages in

156 WATTENBERG, ROHALL, GRUEN, KERR

a thread, and provide message summary information via a “hover over.” This
level of integration—exactly what had been missing in the first Notes-based
thread prototype—was broadly liked.

5.5. Thread Arc Testing

Many features of ReMail 2.0 drew interest, including the thread maps.
There was a corporate desire, however, to perform further testing before new
features, including thread maps, were incorporated into a product.

TARGETING THE ENTERPRISE 157

Figure 8. ReMail 2.0 prototype (2002).

Figure 9. Thread Arc design.

The CUE lab conducted a formal usability test of a small group (n = 5) of
users to determine the utility of the new features, with special emphasis on the
thread. These tests were run on a preconstructed e-mail database in a usability
lab and took between 2 and 3 hr. As part of the test, the ReMail 2.0 prototype
was configured to include a choice of two kinds of thread maps to determine
which would be most advantageous. The results showed that users like the
ability to easily navigate among related items and the Thread Arcs were
slightly preferred to an alternative tree diagram used (which was similar to
Figure 3).

Kerr (2003) then built a stand-alone working prototype that would allow
users to see visualizations of their own mail in the context of an e-mail client.
Eight users were shown this prototype and allowed to switch between differ-
ent visualizations methods; after seeing the results, they were asked to rate
and compare the visualizations. They were also asked about key qualities that
they felt were important in visualizing their e-mail threads. The results con-
firmed the importance of showing the chronology of messages and the need
to show both bushy and narrow threads compactly. It also suggested that
Thread Arcs were well suited for the size and type of conversations found in
users’ real mail and, on balance, did a good job at satisfying all of the qualities
that users valued in small-scale thread visualizations.

Finally, when the ReMail 2.0 client was complete, a general study was per-
formed (Gruen et al., 2004). Here users (n = 9) were asked to use ReMail 2.0
as their primary client for over a week and were then interviewed about their
experience with its advanced feature set. Once again, the feedback consis-
tently pointed to the value of connecting related items in conversational
thread and the value of the Thread Arcs.

The combination of these studies gave the product team more confidence
in the Thread Arc concept and they began work on implementation using our
prototype code as their starting point—completing a sequence of research be-
gun years before.

5.6. What Makes a Successful Strategy?

Our strategy throughout the development of Thread Arcs has been di-
rected by the three themes of enterprise research identified earlier. First,
knowing the pitfalls of overload and individual differences, we have taken a
system-oriented approach to design and assessment and have expended a
great deal of development effort to see how various thread navigation devices
interacted with other components under realistic usage. Second, the design of
the thread map reflects collaborative concerns. A thread map is really a map
of collaboration; additionally, the issues of context and connection addressed
by the thread map arose in all our studies of collaboration. Finally, the fact

158 WATTENBERG, ROHALL, GRUEN, KERR

that Thread Arcs were transferred to the product shows both a good choice of
problem area—the small amount of information needed to create a thread
map is compatible with a client-server architecture—and considerable effort
by our researchers working directly with server-side product-team coders to
resolve technical issues.

This last point raises an important question: To what extent should practi-
cal engineering considerations influence research, especially research on user
interfaces? Although there are obvious benefits to presenting a product team
with feature suggestions that are easily implemented, it is arguably at least as
important for a research team to push beyond what is merely easy. Indeed,
classic vision pieces such as the Apple Knowledge Navigator video present in-
terfaces which we still do not know how to implement—yet they have been
enormously influential. Our experience suggests a rule of thumb: It is fine for
a research team to work on hard-to-implement ideas provided that it is always
understood what are the obstacles to implementation. In the case of the Cor-
respondent Map, blithe assumptions about client-side processing and use of
the English language led us to ignore interesting and important consider-
ations faced by many visualizations. However, the ReMail vision piece was
effective despite showing certain “magical” elements, partly because it was
made clear just how far it was from easy realization. To sum up, researchers
should push technological boundaries, but they can only do so effectively if
they understand where the boundaries lie.

6. CONCLUSION

6.1. The Pragmatic System-Based Approach

This article has provided an introduction to the perspective, opportunities,
and constraints inherent in research aimed at influencing very large-scale
e-mail systems. We have highlighted three key challenges: the multifaceted and
idiosyncraticnatureof e-mail usageby individuals, the fact that e-mail isnot just
a communication device but often a collaborative system used to coordinate
group activity, and the existence of constraints stemming from the need to scale
to large, diverse audiences. We have described various methodologies to meet
each of these challenges: the importance of empirical work to understand the
full complexity of the e-mail system, the necessity of building working proto-
types to understand how new features affect a functioning system, and the im-
portance of technical simplicity and scalability for distributing features widely.
We have also described some of the tactics required for new ideas to become
adopted innonacademic settings—theLotusphere“visionpiece,” forexample,
is very far from a peer-reviewed research article but certainly played a role in
the transfer of ideas from our research lab to the development team.

TARGETING THE ENTERPRISE 159

6.2. Future Directions

We believe that the system-oriented approach to e-mail suggests several
promising directions for future investigation. First, in many settings—such as
a large corporation—significant “extra” data is available beyond what is
found in standard e-mail headers. To give one example, corporate directories
can be used to extract a variety of data on senders and recipients. Thus in the
future, it may be desirable to automatically highlight messages that come
from a user’s supervisor or otherwise use data from an organizational chart for
display and message retrieval.

Second, we feel that more attention is needed to the case of e-mail as a col-
laborative activity. We have found that e-mail inboxes are often used col-
laboratively and relatively little development has gone into creating features
that ease the special problems of cooperative and concurrent use.

Third, there is currently a mismatch between the technical architecture
used in implementing large-scale systems (distributed computation per-
formed on sets of servers) and the client-centric architecture of many popular
e-mail systems. Although moving computation to the server side has signifi-
cant benefits to a corporation, it has also—in our experience—led to increas-
ing difficulty in adding graphical, data-intensive, or computation-heavy fea-
tures to e-mail programs. We believe this tension—between the convenience
of centralized architectures and the power of client-side ones—will turn out to
be an important theme in coming years and that it is important to find tech-
niques to exploit the benefits of both.

Finally, we have found a consistent theme that users need help navigating
the e-mail system, both individually and (as with shared inboxes) in the con-
text of a workflow. Given the current flood of e-mail and the need to respond
in near real-time, we believe aids for managing attention and coordination
will become increasingly critical. We are currently working on a new frame-
work for semiautomatic classification of e-mails into particular “activities,” al-
lowing both organization and integration into other tasks performed in a cor-
porate setting.

NOTES

Acknowledgments. Thanks to everyone in the Collaborative User Experience
group who participated in our research, many of whom are mentioned by name in the
text. Special thanks to Paul Moody, Bob Stachel, Kushal Dave, Seymour Kellerman,
Steve Foley, Robert Armes, John Patterson, Mia Stern, Eric Wilcox, Carol Galvin,
Sandra Kogan, and Irene Greif. And thanks to interns Suzanne Minassian, Derek
Lam, Kayvon Fatahalian, Evan Jones, Shaun Park, Ka-Ping Yee, Selina Chu, James
Eagan, and Regina Tassone.

160 WATTENBERG, ROHALL, GRUEN, KERR

Background. The IBM Collaborative User Experience Research group was for-
merly known as Lotus Research.

Authors’ Present Addresses. Martin Wattenberg, Steven Rohall, Daniel Gruen, Ber-
nard Kerr, IBM Research, One Rogers Street, Cambridge, MA 02142. E-mail:
mwatten@us.ibm.com.

HCI Editorial Record. First manuscript received June 16, 2003. Revision received
April 14, 2004. Accepted by Steve Whittaker. Final manuscript received November
15, 2004. — Editor

REFERENCES

Bälter, O., (1998). Electronic mail in a working context. Unpublished doctoral disserta-
tion, Royal Institute of Technology, Stockholm.

Bush, V. (1945, July). As we may think. The Atlantic Monthly, 176(1), 101–108.
Chu, S., Eagan, J., Stern, M., & Moody, P. (2003). Classifying with email types: A user

study (IBM CUE Technical Report).
Donath, J., Karahalios, K., & Viégas, F. (1999). Visualizing conversations. Proceedings of

the HICSS-32 1999 Conference.
Field, R. (1987) Knowledge navigator. Cupertino, CA: Apple Computer.
Fisher, D., & Moody, P. (2002). Studies of automated collection of email records (UCI ISR

Technical Report ISR-02-04). Irvine, CA: Institute of Software research.
Gruen, D., Rohall, S. L., Minassian, S., Kerr, B., Moody, P., Stachel, B., et al. (2004).

Lessons from the ReMail prototypes. Proceedings of the 2004 Conference on Computer
Supported Cooperative Work. New York: ACM.

Gruen, D., Sidner, C., Boettner, C., & Rich, C. (1999). A collaborative assistant for
email. Proceedings of the CHI 1999 Conference on Extending Abstracts on Humn Factors in
Computing Systems. New York: ACM.

Jovicic, S., & Baecker, R. (1999, June). Time-Based archiving and retrieval of email.
Workshop on history-keeping in computer applications. Workshop presented at the HCI
Lab, University of Maryland, College Park, MD.

Kerr, B. (2003)., THREAD ARCS: An email thread visualization. Proceedings of the
IEEE Symposium on Information Visualization. New York: ACM.

Kudo, M., Tanaka, X., & Koseki, Y. (1997). Information visualization for electronic
mail management. Proceedings of the Visual 1997 Conference. New York: ACM.

Muller, M., & Gruen, D. (2002). Collaborating within—not through—email: Users reinvent
a familiar technology (IBM CUE Technical Report 2002-10). Armonk, NY: IBM.

Nardi, B., Whittaker, S., Isaacs, E., Creech, M., Johnson, J., & Hainsworth, J. (2002).
Integrating communication and information through ContactMap. Communications
of the ACM, 45(4), 89–95.

Raymond, E. S. (2001). The cathedral and the bazaar. Sebastopol, CA: O’Reilly
Rohall, S. L., Gruen, D., Moody, P., & Kellerman, S. (2001). Email visualizations to aid

communications. Proceedings of the 2001 IEEE Symposium on Information Visualiza-
tion. New York: ACM.

Shneiderman, B. (1992). Tree visualization with tree-maps: 2-d space-filling approach.
ACM Transactions on Graphics, 11, 92–99.

TARGETING THE ENTERPRISE 161

Smith, M., Cadiz, J. J., & Burkhalter, B. (2000). Conversation trees and threaded chats.
Proceedings of the 2000 Conference on Computer Supported Cooperative Work. New York:
ACM.

Sproull, L, & Kiesler, S. (1991). Connections: New ways of working in the networked organi-
zation. Cambridge, MA: MIT Press.

Stern, M. (2004). Dates and times in email messages. Proceedings of the 9th International
Conference on Intelligent User Interfaces. New York: ACM.

Venolia, G., & Neustaedter, C. (2003). Understanding sequence and reply relation-
ships within email conversations: A mixed-model visualization. Proceedings of the
SIGCHI 2003Conference on Human Factors in Computing Systems. New York: ACM.

Viegas, F., Boyd, D., Nguyen, D., Potter, J., & Donath, J. (2004). Digital artifacts for re-
membering and storytelling: PostHistory and social network fragments. Proceedings
of the Hawaii International 2004 Conference on System Sciences.

Whittaker, S., & Sidner, C. (1996), Email overload: Exploring personal information
management of email. Proceedings of the SIGCHI 1996 Conference on Human Factors in
Computing Systems: Common Ground. New York: ACM.

Yiu, K., Baecker, R., Silver, N., & Long, B. (1997). A time-based interface for elec-
tronic mail and task management. Proceedings of the HCI International 1997 Conference
on Design of Computing Systems. Elsevier.

Zawinski, J. (1997). Message threading. Retrieved January 2004, from http://www.jwz.
org/doc/threading.html

162 WATTENBERG, ROHALL, GRUEN, KERR

